Refine Your Search

Topic

Search Results

Standard

ELECTROPLATE REQUIREMENTS FOR DECORATIVE CHROMIUM DEPOSITS ON ZINC BASE MATERIALS USED FOR EXTERIOR ORNAMENTATION

1991-06-01
HISTORICAL
J1837_199106
This SAE Standard covers the physical and performance requirements for electrodeposited copper, nickel, and chromium deposits on exterior ornamentation fabricated from die cast zinc alloys (SAE J468 alloys 903 and 925), and wrought zinc strip (ASTM B 69). This type of coating is designed to provide a high degree of corrosion resistance for automotive, truck, marine, and farm usage where a bright, decorative finish is desired.
Standard

Zinc Die Casting Alloys

2017-12-20
CURRENT
J469_201712
Because of the drastic chilling involved in die casting and the fact that the solid solubilities of both aluminum and copper in zinc change with temperature, these alloys are subject to some aging changes, one of which is a dimensional change. Both of the alloys undergo a slight shrinkage after casting, which at room temperature is about two-thirds complete in five weeks. It is possible to accelerate this shrinkage by a stabilizing anneal, after which no further changes occur. The recommended stabilizing anneal is 3 to 6 h at 100 °C (212 °F), or 5 to 10 h at 85 °C (185 °F), or 10 to 20 h at 70 °C (158 °F). The time in each case is measured from the time at which the castings reach the annealing temperature. The parts may be air cooled after annealing. Such a treatment will cause a shrinkage (0.0004 in per in) of about two-thirds of the total, and the remaining shrinkage will occur at room temperature during the subsequent few weeks.
Standard

ZINC DIE CASTING ALLOYS

1989-01-01
HISTORICAL
J469_198901
Because of the drastic chilling involved in die casting and the fact that the solid solubilities of both aluminum and copper in zinc change with temperature, these alloys are subject to some aging changes, one of which is a dimensional change. Both of the alloys undergo a slight shrinkage after casting, which at room temperature is about two-thirds complete in five weeks. It is possible to accelerate this shrinkage by a stabilizing anneal, after which no further changes occur. The recommended stabilizing anneal is 3 to 6 h at 100 °C (212 °F), or 5 to 10 h at 85 °C (185 °F), or 10 to 20 h at 70 °C (158 °F). The time in each case is measured from the time at which the castings reach the annealing temperature. The parts may be air cooled after annealing. Such a treatment will cause a shrinkage (0.0004 in per in) of about two-thirds of the total, and the remaining shrinkage will occur at room temperature during the subsequent few weeks.
Standard

ELECTROMAGNETIC TESTING BY EDDY CURRENT METHODS

1991-03-01
HISTORICAL
J425_199103
The purpose of this SAE Information Report is to provide general information relative to the nature and use of eddy current techniques for nondestructive testing. The document is not intended to provide detailed technical information but to serve as an introduction to the principles and capabilities of eddy current testing, and as a guide to more extensive references listed in Section 2.
Standard

High-Strength, Hot-Rolled Steel Bars

2003-09-24
CURRENT
J1442_200309
This SAE Recommended Practice covers two levels of high strength structural low-alloy steel bars having minimum Yield Points of 345 MPa (50 ksi) and 450 MPa (65 ksi). The two strength levels are 345 and 450 MPa or 50 and 65 ksi minimum yield point. Different chemical compositions are used to achieve the specified mechanical properties. In some cases there are significant differences in chemical composition for the same strength level, depending on the fabricating requirements. It should be noted that although the mechanical properties for a steel grade sourced from different suppliers may be the same, the chemical composition may vary significantly. The fabricator should be aware that certain compositional differences may effect the forming, welding, and/or service requirements of the material. It is therefore recommended that the fabricator consult with the producer to understand the effect of chemical composition.
Standard

Glossary of Carbon Steel Sheet and Strip Terms

2019-07-29
CURRENT
J940_201907
This glossary is intended to provide engineers, metallurgists, and production personnel with uniform definitions of commonly used carbon sheet and strip terms. The glossary serves to supplement information and photographs reported in SAE J810, J763, J877, J863, and J403. Many of the terms listed apply only to hot-dipped zinc-coated products or to uncoated products. The letter C following the term identifies a term applying to coated materials, while the letters NC identify a term applying to uncoated materials. Where no identification is provided, the term is common to both.
Standard

HARD DRAWN CARBON STEEL VALVE SPRING QUALITY WIRE AND SPRINGS

1988-12-01
HISTORICAL
J172_198812
This SAE Recommended Practice covers the mechanical and chemical requirements of the best quality hard drawn carbon steel spring wire used for the manufacture of engine valve springs and other springs requiring high fatigue properties. It also covers the basic material and processing requirements of springs fabricated from this wire.
Standard

SPECIAL QUALITY HIGH TENSILE, HARD DRAWN MECHANICAL SPRING WIRE AND SPRINGS

1988-12-01
HISTORICAL
J271_198812
This recommended practice covers the mechanical and chemical requirements of special quality high tensile, hard drawn carbon steel spring wire with restricted size tolerances. This material is used where such restricted dimensional requirements are necessary for the manufacture of highly stressed mechanical springs and wire forms. It is generally employed for applications subject to static loads or infrequent stress repetitions. This recommended practice also covers basic materials and processing requirements of springs and forms fabricated therefrom.
Standard

ANODIZED ALUMINUM AUTOMOTIVE PARTS

1985-02-01
HISTORICAL
J399_198502
Automotive parts can be fabricated from either coiled sheet, flat sheet or extruded shapes. Alloy selection is governed by finish requirements, forming characteristics, and mechanical properties. Bright anodizing alloys 5657 and 52521 sheet provide a high luster and are preferred for trim which can be formed from an intermediate temper, such as H25. Bright anodizing alloy 5457 is used for parts which require high elongation and a fully annealed ("0") temper. Alloy 6463 is a medium strength bright anodizing extrusion alloy; Alloy X7016 is a high strength bright anodizing extrusion alloy primarily suited for bumper applications. To satisfy anti-glare requirements for certain trim applications, sheet alloy 5205 and extrusion alloy 6063 are capable of providing the desired low-gloss anodized finish.
Standard

ELECTROPLATING AND RELATED FINISHES

1985-02-01
HISTORICAL
J474_198502
Electroplating is a process whereby an object is coated with one or more relatively thin, tightly adherent layers of one or more metals. It is accomplished by placing the object to be coated on a plating rack or a fixture, or in a basket or in a rotating container in such a manner that a suitable current may flow through it, and then immersing it in a series of solutions and rinses in planned sequence. The advantage to be gained by electroplating may be considerable; broadly speaking, the process is used when it is desired to endow the basis material (selected for cost, material conservation, and physical property reasons) with surface properties it does not possess. It should be noted that although electroplating is the most widely used process for applying metals to a substrate, they may also be applied by spraying, vacuum deposition, cladding, hot dipping, chemical reduction, mechanical plating, etc.
Standard

Potential Standard Steels

2000-11-10
HISTORICAL
J1081_200011
This SAE Information Report provides a uniform means of designating wrought steels during a period of usage prior to the time they meet the requirements for SAE standard steel designation. The numbers consist of the prefix PS1 followed by a sequential number starting with 1. A number once assigned is never assigned to any other composition. A PS number may be obtained for steel composition by submitting a written request to SAE Staff, indicating the chemical composition and other pertinent characteristics of the material. If the request is approved according to established procedures, SAE Staff will assign a PS number to the grade. This number will remain in effect until the grade meets the requirements for an SAE standard steel or the grade is discontinued according to established procedures. Table 1 is a listing of the chemical composition limits of potential standard steels which were considered active on the date of the last survey prior to the date of this report.
X