Criteria

Text:
Topic:
Author:
Display:

Results

Viewing 1 to 30 of 39
2013-11-27
Technical Paper
2013-01-2888
Vaibhav Ahlawat, Mayank Gupta, Shaswat Anand, Vismit Bansal, Vibhor Jain, Naveen Kumar
The world today is majorly dependent upon fossil fuels for power generation, of which diesel forms an integral part. Diesel engines, having the highest thermal efficiency of any regular internal or external combustion engine, are widely used in almost all walks of life and cannot be dispensed with in the near future. However, the limited availability of diesel and the adverse effects of diesel engine emissions like nitrogen oxide (NOx) and soot particles raise serious concerns. Hence, their performance and emission improvement continues to be an avenue of great research activity. In this research work, the effects of blending Diethyl Ether with diesel in various proportions (5%, 10%, 15% and 20% by volume) were evaluated on engine performance and emissions of an industrial internal combustion engine.
2013-10-14
Technical Paper
2013-01-2684
Naveen Kumar, Sidharth Bansal, Vipul Vibhanshu, Ashish Singh
Diesel Engines are widely used in transportation, industrial and agriculture sectors worldwide due to their versatility and ruggedness. However, they also emit harmful emissions detrimental to human health and environment. Apart from environmental degradation, the perturbation in international crude oil prices is also mandating use of renewable fuels. In this context, vegetable oils such as Jatropha Curcas due to their carbon neutral nature and widespread availability, seems to present a promising alternative to the mineral diesel. Straight vegetable oils (SVO) are not recommended for direct diesel engine application due to their higher viscosity, poor volatility etc. and dilution of straight vegetable oil may effectively enable its direct application in unmodified diesel engines. In the present study, Jatropha oil was diluted with n-Butanol to improve the fuel properties of the blend.
2013-10-14
Technical Paper
2013-01-2664
Raghvendra Gautam, Naveen Kumar, Pritam Sharma
India possesses only 0.3% of world petroleum reserves and hence heavily dependent upon petroleum derived fuels to feed its rapidly growing economy. Diesel Engines due to their superior performance have wide application in India, however, they also pollute environment significantly. Research is underway in India and elsewhere to explore the potential of variety of alternative fuels which could substitute diesel in a holistic manner. And in this context, non-edible vegetable oils are very promising as India has a large area of degraded land where such crops could be raised without compromising food security. Large number of studies have suggested that vegetable oils are not suitable in neat form as a fuel in diesel engine and should be trans-esterified using either methanol or ethanol to form esters to bring their properties similar to diesel fuel.
2013-09-08
Journal Article
2013-24-0105
Vipul Vibhanshu, Naveen Kumar, Chinmaya Mishra, Sunil Sinha, Harveer Singh Pali, Sidharth Bansal
Dwindling petroleum reserves and alarming level of air pollution has been an issue of great concern in recent times and researchers across the world are experimenting on variety of renewable fuels for meeting the future energy demands. Within the gamut of alternative fuels, biofuels are the most promising and have the potential to mitigate climate change and lease a new life to existing IC engines. The vegetable oils are having immense potential in this context and have been used either in neat or modified form by large number of researchers. Jatropha curcus is a perennial plant and bears non edible oil. The plant is drought tolerant and has been cultivated all over the arid and semi-arid areas for reforestation. In the present study, blends of jatropha oil and ethanol have been prepared in 5, 10, 15 and 20% (v/v) and evaluation of important properties of blends has been carried. The results show that properties are quite similar to diesel fuel.
2013-09-08
Technical Paper
2013-24-0171
Amar Deep, Ashish Singh, Vipul Vibhanshu, Anubhav Khandelwal, Naveen Kumar
The rising cost and exponential depletion of crude oil in international market has provided an opportunity for the researchers to evaluate the utilization and suitability of various renewable fuels. Amongst variety of alternative fuels, biofuels have the potential to mitigate the vulnerability and the adverse effects of use of fossil fuels. Vegetable/plant oil is better proposition as alternative fuel for diesel engine having much advantage over other alternative fuels. Orange oil from its peel has a huge potential and can be used as an alternate fuel at the most economical purchase rate. In the present investigation experiments were carried out to evaluate performance and emission characteristics of Orange peel oil methyl ester blends (OPOME) (10%, and 20% by volume) on unmodified diesel engine. The properties of these blends were found to be comparable to diesel and confirming to both the American and European standards.
2013-09-08
Technical Paper
2013-24-0172
Raghvendra Gautam, Naveen Kumar, Pritam Sharma
Biodiesel in has gained great momentum in last few years and has been a subject of vast research all around the globe. Bulk of the research work carried out so far has been confined to production of methyl esters of vegetable oil that is known as biodiesel in the transesterification process. In the present study, jatropha oil ethyl ester (JOEE) was prepared using transesterification process with ethanol and KOH as a catalyst. The evaluation of important physico-chemical properties was carried and the properties were found within acceptable limits of ASTM/EN standards. A small capacity diesel engine was fuelled with different blends of JOEE and diesel and various performances, emission and combustion characteristics were evaluated. The results suggested that brake thermal efficiency was increased and emissions of carbon monoxide, hydrocarbons and smoke opacity were found lower for JOEE blend confirming better combustion due to the oxygenated fuel and higher cetane rating.
2014-04-01
Technical Paper
2014-01-1378
Jitesh Singh Patel, Naveen Kumar, Amar Deep, Abhishek Sharma, Dhruv Gupta
Abstract Primary energy sources can be divided into non-renewable and renewable. The over-exploration of non-renewable sources for energy availability imposes considerable impacts on the environment. Reducing the use of fossil fuels would significantly reduce the carbon dioxide emissions and other pollutants produced. The future drift for sustainable production of renewable energy is cautiously thoughtful for it has been increasingly understood that first generation biofuels, majorly produced from food crops that are limited in their ability to achieve targets for biofuel production, climate change mitigation and economic growth. These concerns have increased the interest in developing second generation biofuels produced from non-edible feedstock such as microalgae, which potentially offers greatest opportunities in the longer term. Microalgae are considered a very promising feedstock for biodiesel production due to their very high yield and their no competition with food crops.
2014-04-01
Technical Paper
2014-01-1396
Harveer Singh Pali, Naveen Kumar, Chinmaya Mishra
Abstract In the present study, ethanol was added in lower proportions to non-edible vegetable oil “Schleichera oleosa” or “Kusum”, to evaluate various performance and emission characteristics of a single cylinder; diesel engine. For engine's trial, four samples were prepared with 5%, 10%, 15% and 20% ethanol in kusum oil (v/v) and the blends were named as E5K95, E10K90, E15K85 and E20K80 respectively. Neat Kusum oil was named as K100. The results indicated that brake thermal efficiency (BTE) was found to increase with increase in volume fraction of ethanol in the kusum oil. E5K95, E10K90, E15K85 and E20K80 test fuels exhibited maximum BTE of 25.4%, 26.4%, 27.4% and 27.7% respectively as compared to 23.6% exhibited by the neat Kusum oil. Similarly, full load brake specific energy consumption (BSEC) decreased from 16.3MJ/kWh in case of neat Kusum oil to 15.1MJ/kWh for E20K80 with an almost linear reduction pattern with increased ethanol composition in the test fuel.
2015-04-14
Technical Paper
2015-01-0958
Naveen Kumar, Sidharth Bansal, Harveer Singh Pali
Abstract Concerns about long term availability of petroleum based fuels and stringent environmental norms have been a subject for deliberations around the globe. The vegetable oil based fuels and alcohols are very promising alternative fuels for substitution of diesel, reduce exhaust emissions and to improve combustion in diesel engines which is mainly possible due to oxygenated nature of these fuels. Jatropha oil is important non-edible oil in India which is either used in neat or modified form as diesel fuel. Furthermore n-butanol is renewable higher alcohol having properties quite similar to diesel fuel. In the present study, n-butanol was blended in Jatropha Oil (JO) and Jatropha Oil Methyl Ester (JME) on volumetric basis (10 and 20%). The blends were homogeneous and stable and there was no phase separation. The different physicochemical properties of blends were evaluated as per relevant standards.
2014-10-13
Technical Paper
2014-01-2830
Amar Deep, Naveen Kumar, Ashish Karnwal, Dhruv Gupta, Vipul Vibhanshu, Abhishek Sharma, Jitesh Singh Patel
Abstract The interest of using alternative fuels in diesel engines has been accelerated exponentially due to a foreseen scarcity in world petroleum reserves, increase in the prices of the conventional fossil fuels and restrictions on exhaust emissions such as greenhouse gases from internal combustion (IC) engines initiated by environmental concerns. The constant trade-off between efficiency and emissions should be in proper balance with the conventional fuels in a fuel design process for future combustors. Unlike gasoline and diesel, alcohols act as oxygenated fuels. Adding alcohols to petroleum products allows the fuel to combust properly due to the presence of oxygen, which enhances premixed combustion phase, improves the diffusive combustion phase which increases the combustion efficiency and reduces air pollution. The higher activation energy of alcohols leads to better resistance to engine knocking that allows higher compression ratios and greater engine thermal efficiencies.
2014-10-13
Technical Paper
2014-01-2651
Vipul Vibhanshu, Ashish Karnwal, Amar Deep, Naveen Kumar
The rising cost and limited availability of crude oil in international market has provided an opportunity to look for substitute of fossil fuel. Scientists all over the world are experimenting on variety of renewable fuels for meeting the future energy demands. Bio origin fuels are fast becoming potential alternative resources to replace the fossil fuels. The vegetable oils, derived from oil seed crops have got 90 to 95% energy value of diesel on volume basis, comparable cetane number and can substitute upto 20% (v/v) of diesel fuel. Mahua seed oil is common ingredient of hydrogenated fat. Two-step transesterification process was employed to synthesize biodiesel from Mahua Oil (Madhuca-indica) and analysis of Physico-chemical properties as well as the combustion, performance and emission characteristics was done by taking 10, 20 and 100 % blend with diesel. The physico-chemical properties of the blends were found to be comparable to diesel.
2014-10-13
Technical Paper
2014-01-2778
Amar Deep, Naveen Kumar, Dhruv Gupta, Abhishek Sharma, Jitesh Singh Patel, Ashish Karnwal
Abstract Diesel engines are employed particularly in the field of heavy transportation and agriculture on account of their higher thermal efficiency and durability. As these engines, are the backbones of contemporary global transportation and accounts a 30% of world's energy consumption, which is second highest after the industrial sector. Therefore, the fossil fuel consumption becomes the prime concern. Following the global energy crisis and the increasingly stringent emission norms, the search for alternative renewable fuels has intensified. Currently, biodiesel (BD) has been identified as the most attractive and practical choice to replace fossil fuel as the main source of energy, due to the similarity in the properties with conventional diesel. However, its development and application have been hindered by the high cost of required feedstock. Therefore, in recent years, researchers have been seeking the alternative sources of non-edible oil which are economical.
2014-10-13
Technical Paper
2014-01-2773
Vasu Kumar, Naveen Kumar, Vishvendra Tomar, Gagneet Kalsi
Abstract The world today is facing the effect of the dependence on fossil fuels. Also, the rate of consumption of Fossil derived fuels is alarming. The use of non-conventional energy sources is to be increased so as to tackle the global climatic changes, environmental pollution and also to lower down the rate of depletion of fossil fuels. The urgent need to replace the petroleum products having harmful emissions has leaded us to the Biodiesel. Biodiesel is a well-known alternative for diesel with an advantage over the later because of its biodegradable, less toxic nature, superior lubricity, better emission characteristics and in a way environment friendly. The present study focuses on the comparative study and analysis of performance and emission characteristics of a light duty diesel engine on blends of Fish oil Biodiesel in Diesel and Calophyllum Inophyllum Oil Biodiesel in Diesel.
2014-09-30
Technical Paper
2014-01-2327
Ashish Kumar Singh, Abhishek Sharma, Naveen Kumar
Abstract Rapid depletion of fossil fuels is urgently demanding an extensive research work to find out the viable alternative fuel for meeting sustainable energy demand without any environmental impact. In the future, our energy systems will need to be renewable, sustainable, efficient, cost-effective, convenient and safe. Therefore, researchers has shown interest towards alternative fuels like vegetable oils, alcohols, LPG, CNG, Producer gas, biogas in order to substitute conventional fuel i.e. diesel used in compression ignition (CI) engine. However, studies have suggested that trans-esterified vegetable oils retain quite similar physico-chemical properties comparable to diesel. Besides having several advantages, its use is restricted due to higher emissions i.e. NOx, CO, HC and deposits due to improper combustion. Hence, there is a need of cleaner fuel for diesel engines for the forthcoming stringent emissions norms and the fossil depletion.
2014-04-01
Technical Paper
2014-01-1666
Vasu Kumar, Jayati Takkar, Manas Chitransh, Naveen Kumar, Utsav Banka, Unish Gupta
Abstract The transportation sector faces great and urgent challenges, including climate impacts of greenhouse gas emissions, local health impacts of criteria pollutants, and political & economic impacts of petroleum dependence. While several revolutionary solutions are being developed to reduce the impact of motor vehicles, such as increased fuel economy standards and accelerated adoption of hybrid vehicles, revolutionary new approaches must also be evaluated. One such opportunity is found in Compressed Air Engine (CA Engine), which is powered solely by compressed air stored in a vehicle on-board pressurized tank. Proponents of this technology claim CA Engines are greener and cheaper to operate, since they do not consume fossil fuels and produce zero tail-pipe emissions, while offering the power and performance needed for light-duty vehicle use.
2014-04-01
Technical Paper
2014-01-1952
Harveer Singh Pali, Naveen Kumar, Chinmaya Mishra
Abstract Biodiesel from non-edible vegetable oils is of paramount significance in India due to insufficient edible oil production. The present work deals with relatively underutilized non-edible oil “Schleichera oleosa” or “Kusum”. The Kusum biodiesel (KB) was produced using a two stage esterification cum transesterification process as the free fatty acid content of the oil was high. Important physico-chemical properties were evaluated and they were found to conform with corresponding ASTM/EN standards. Various test fuels were prepared for the engine trial by blending 10%, 20%, 30% and 40% of KB in diesel by volume and were named as KB10, KB20, KB30 and KB40 respectively. The results showed that full load brake thermal efficiency was dropped by 3.8% to 17% with increase in KB composition in the test fuel. Diesel (D100) showed the maximum full load brake specific energy consumption followed by KB10, KB20, KB30 and KB40.
2013-09-08
Technical Paper
2013-24-0151
Anuj Pal, Manish V, Sahil Gupta, Naveen Kumar
The increasing rate of fossil fuel depletion and large scale debasement of the environment has been a serious concern across the globe. This twin problem of energy crises has caused researchers to look for a variety of solutions in the field of internal combustion engines. In this current scenario the issue of fuel availability has increased the use alternative fuels, especially alcohol derived fuels. Alcohol-diesel blends can be been seen as a prominent fuel for CI engine in the near future. Previous research on the use of alcohol as an alternative fuel in CI engines is restricted to short branch alcohols, such as methanol and ethanol. Despite their comparable combustion properties longer chain alcohols, such as butanol, isobutanol and pentanol have been barely investigated. In the present study performance and emission characteristics of an isobutanol-diesel blend was studied. One of the major problems encountered by isobutanol in CI engines is its low cetane rating.
2013-04-08
Technical Paper
2013-01-1040
Manish V, Sahil Gupta, Naveen Kumar, Varun Vohra
Ever increasing consumption of fossil fuel and large scale deterioration of environment are mandating employment of renewable fuels. Researchers all over the world are experimenting on variety of alternative fuels for meeting future energy demands. Biodiesel is one of the most promising alternative fuels due to lower CO, HC and PM emissions. However, NOx emissions are increased in case of biodiesel in CI engine. The present study focuses on evaluation of performance and emission characteristics of a medium capacity diesel engine on blends of fish oil biodiesel and diesel blends employing EGR. Fish oil was transesterified with methyl alcohol to produce methyl ester. B20 blend of biodiesel was used since it balances the property differences with conventional diesel, e.g., performance, emission benefits and cost. Further, B20 blend can be used in automotive engines with no major modification. NOx formation takes place when combustion temperature is more than 2000K.
2013-04-08
Technical Paper
2013-01-1041
Vipul Vibhanshu, Naveen Kumar, Ashish Singh, Chinmaya Mishra
Ever increasing consumption of petroleum derived fuels has been a matter of grave concern due to rapidly depleting global reserves and alarming levels of emissions leading to global warming and climate change. Exhaustive research has been carried out globally to evaluate the suitability of variety of renewable fuels for internal combustion engine applications. Amongst them, vegetable oil methyl esters or biodiesel seem to be a promising alternative for diesel in vital sectors such as transportation, industrial and rural agriculture. For quite some time, the focus for production of biodiesel has shifted towards non-edible oil feedstock from the edible ones, mostly due to food security issues. One such non-edible oil, locally known as Mahua in Indian subcontinent, is a very promising feed stock for biodiesel production. In the present investigation, 5%, 10%, 15% and 20% (v/v %) blends of mahua oil methyl ester (MOME) and diesel were prepared.
2013-10-14
Technical Paper
2013-01-2508
Shivank Garg, Amarjot Singh Parmar, Saurabh Puri, Naveen Kumar
Internal combustion engines are extensively used in every field of life in today's world. Diesel engines being more efficient are preferred in the industrial and transportation sector in comparison to spark ignition engines for their higher efficiency, versatility and ruggedness. The major emissions of diesel engines are oxides of nitrogen (NOx), particulate matter (PM), carbon dioxide (CO2), carbon monoxide (CO). Among these emissions, oxides of nitrogen (NOx) and the particulate matter are the reasons of serious concern. For reduction of oxides of nitrogen (NOx) and particulate matter simultaneously, the use of Homogeneous Charge Compression Ignition (HCCI) have provided a sustainable solution in the present scenario. Further, the use of CNG in HCCI engine along with pilot diesel injection; the emissions have been decreased drastically. Homogeneous mixing of fuel and air leads to cleaner combustion and lower emissions.
2013-09-17
Technical Paper
2013-01-2170
Naveen Kumar, Abhishek Sharma, Vipul Vibhanshu
Globally, transportation is the second largest energy consuming sector after the industrial sector and is completely dependent on petroleum products and alternative technologies. So, fossil fuel consumption for energy requirement is a primary concern and can be addressed with the fuel consumption reduction technologies. Transportation sector is mainly using diesel engines because of production of high thermal efficiency and higher torque at lower RPM. Therefore, diesel consumption should be targeted for future energy security and this can be primarily controlled by the petroleum fuel substitution techniques for existing diesel engines. Some of the fuel, which includes biodiesel, alcohol-diesel emulsions and diesel water emulsions etc. Among which the diesel water emulsion (DWE) is found to be most suitable fuel due to reduction in particulate matter and NOx emission, besides that it also improves the brake thermal efficiency.
2013-04-08
Technical Paper
2013-01-1132
Ashish Kumar Singh, Chinmaya Mishra, Vipul Vibhanshu, Naveen Kumar
Phenomenal industrial activities worldwide in the last couple of centuries have resulted in indiscriminate use of conventional energy resources and environmental degradation. The consumption of petroleum-derived fuels has increased exponentially due to enhanced mobility and also caused serious threat to earth's eco-system. The need to explore variety of alternative fuels in transportation sector has been the subject of research all over the world. In this context, alcohols like butanol and isopropyl alcohol seem to present a viable option for potential application in diesel engines. In the present investigation, 5%, 10%, 15%, 20% (v/v) blends of isopropyl alcohol and diesel was prepared. The various blends were found to be homogenous and stable. The exhaustive engine trials were carried out on a single-cylinder unmodified diesel engine. The results suggest significant reduction in emission of oxides of nitrogen (NOx for various blends as compared to baseline data of diesel.
2016-10-17
Technical Paper
2016-01-2249
Akash Gangwar, Abhinav Bhardawaj, Ramesh Singh, Naveen Kumar
Abstract Enhancement of combustion behavior of conventional liquid fuel using nanoscale materials of different properties is an imaginative and futuristic topic. This experiment is aimed to evaluate the performance and emission characteristics of a diesel engine when lade with nanoparticles of Cu-Zn alloy. The previous work reported the effect of metal/metal oxide or heterogeneous mixture of two or more particles; less work had been taken to analyze the homogeneous mixture of metals. This paper includes fuel properties such as density, kinematic viscosity, calorific value and performance measures like brake thermal efficiency (BTE), brake specific fuel consumption (BSFC) and emission analysis of NOX, CO, CO2, HC. For the same solid concentration, nano-fuel is compared with base fuel at different engine loads; and its effect when lade at different concentrations.
2016-04-05
Technical Paper
2016-01-1015
Somendra Pratap Singh, Shikhar Asthana, Naveen Kumar
Abstract Recent scenario of fossil fuel depletion as well as rising emission levels has witnessed an ever aggravating trend for decades. The solution to the problems has been addressed by investments and research in the field of fuels; such as the use of cleaner fuels involving biodiesel, alcohol blends, hydrogen and electric drivelines, as well as improvement in traditional technologies such as variable geometry systems, VVT load control strategies etc. The developments have highlighted the enormous potential present in such systems in terms of maximizing engine efficiency and emission reductions. The present paper aims at designing and implementing an intake runner system for a CI engine capable of providing flexibility with variations in operating conditions. Primarily, the design aims at altering the air flow phenomenon within the primary intake of the engine by inducing swirl in the runner through a secondary runner.
2016-04-05
Technical Paper
2016-01-1004
Somendra Pratap Singh, Shikhar Asthana, Shubham Singhal, Naveen Kumar
Abstract The energy crisis coupled with depleting fuel reserves and rising emission levels has encouraged research in the fields of performance enhancement, emission reduction technologies and engineering designs. The present paper aims primarily to offset the problem of high emissions and low efficiencies in low cost CI engines used as temporary power solutions on a large scale. The investigation relates to the low cost optimization of an intake runner having the ability to vary the swirl ratio within the runner. Test runs reveal that NOx and CO2 follow a relatively smaller gradient of rise and fall in their values depending on the configuration; whereas UHC and CO have a rapid changes in values with larger gradients. However, in a relative analysis, no configuration was able to simultaneously reduce all emission parameters and thus, there exists a necessity to find an optimized configuration as a negotiation between the improved and deteriorated parameters.
2016-04-05
Technical Paper
2016-01-1281
Jatin Agarwal, Monis Alam, Ashish Jaiswal, Ketan Yadav, Naveen Kumar
Abstract The continued reliance on fossil fuel energy resources is not sufficient to cater to the current energy demands. The excessive and continuous use of crude oil is now recognized as unviable due to its depleting supplies and elevating environmental degradation by increased emissions from automobile exhaust. There is an urgent need for a renewable and cleaner source of energy to meet the stringent emission norms. Hythane is a mixture of 20% hydrogen and 80% methane. It has benefits of low capital and operating costs and is a cleaner alternative than crude oil. It significantly reduces tailpipe emissions and is the cheapest way to meet new emission standards that is BS-IV. Hythane produces low carbon monoxide (CO), carbon dioxide (CO2) and hydrocarbons (HC) on combustion than crude oil and helps in reduction of greenhouse gases.
2016-04-05
Technical Paper
2016-01-0669
Shikhar Asthana, Shubham Bansal, Shubham Jaggi, Naveen Kumar
Abstract The Automobile industry is under great stress due to greenhouse gas emissions and health impacts of pollutants. The rapid decrease of fossil fuels has promoted the development of engine designs having higher fuel economy. At the same time, these designs keep the stringent emission standards in check without sacrificing brake power. Variable Compression Ratio (VCR) is one such measure. This work reviews the technological advancements in the design of a VCR engine. VCR engines can minimize possible risks of irregular combustion while optimizing Brake specific fuel consumption towards higher power and torque. An increase in fuel economy is seen for VCR naturally aspirated engines when coupled with downsizing. In addition to this, emissions of carbon dioxide decreases due to effective utilization of fuel at high loads. Since the first VCR design, there have been various modifications and improvements in VCR engine design.
2016-04-05
Technical Paper
2016-01-1277
Monis Alam, Ashish Jaiswal, Jatin Agarwal, Ketan Yadav, Naveen Kumar
Abstract Gasoline has been the major fuel in transportation, its good calorific value and high volatility have made it suitable for use in different injection methods. The drastic increase in use of carbon based fuels has led to increase in harmful emissions, thus resulting in implementation of stricter emissions norms. These harmful emissions include carbon monoxide and NOx. To meet the new norms and reduce the harmful emissions, better techniques have to be implemented to achieve better combustion of gasoline and reduce the amount of carbon monoxide in the exhaust. One such way of doing this is by enriching gasoline with hydrogen. Due to its low activation energy and high calorific value, the high energy released from hydrogen can be used to achieve complete combustion of gasoline fuel. However, there are certain drawbacks to the use of hydrogen in spark ignition engine, knocking and overheating of engine parts being the major problems.
2016-04-05
Technical Paper
2016-01-1269
Naveen Kumar, Harveer Singh Pali
Abstract The present study was carried to explore the potential suitability of biodiesel as an extender of Kerosene in an off road dual fuel (gasoline start, kerosene run) generator set and results were compared with kerosene base line data. The biodiesel was blended with kerosene in two different proportions; 2.5% and 5% by volume. Physico-chemical properties of blends were also found to be comparable with kerosene. Engine tests were performed on three test fuels namely K100 (Kerosene 100%), KB 2.5 (Kerosene 97.5% + Biodiesel 2.5%) and KB5 (Kerosene 95% + Biodiesel 5%). It was found that brake thermal efficiency [BTE] increases up to 3.9% while brake specific energy consumption [BSEC] decreases up to 2.2% with increasing 5% volume fraction of biodiesel in kerosene. The exhaust temperature for blends was lower than kerosene. The test engine emitted reduced Carbon monoxide [CO] emission was 7.4 % less than using neat kerosene as compared to kerosene-biodiesel blends.
2016-04-05
Technical Paper
2016-01-1264
Tarun Mehra, Naveen Kumar, Salman Javed, Ashish Jaiswal, Farhan javed
Abstract Non-edible vegetable oils have a huge potential for biodiesel production and also known as second generation feedstock’s. Biodiesel can be obtained from edible, non-edible, waste cooking oil and from animal fats also. This paper focuses on production of biodiesel obtained from mixture of sesame (Sesamum indicum L.) oil and neem (Azadirachta indica) oil which are easily accessible in India and other parts of world. Neem oil has higher FFA content than sesame oil. Biodiesel production from neem oil requires pretreatment neutralization procedure before alkali catalyzed Trans esterification process also it takes large reaction time to achieve biodiesel of feasible yield. Neem oil which has very high FFA and sesame oil which has low FFA content are mixed and this mixture is Trans esterified with no pre-treatment process using molar ratio of 6:1.Fuel properties of methyl ester were close to diesel fuel and satisfied ASTM 6751 and EN 14214 standards.
Viewing 1 to 30 of 39

Filter

  • Range:
    to:
  • Year: