Refine Your Search

Search Results

Viewing 1 to 10 of 10
Standard

Gas Turbine Engine Performance Presentation for Computer Programs Using Fortran

2021-05-13
CURRENT
AS4191A
This SAE Aerospace Standard (AS) provides a method for gas turbine engine performance computer programs to be written using Fortran COMMON blocks. If a “function-call application program interface” (API) is to be used, then ARP4868 and ARP5571 are recommended as alternatives to that described in this document. When it is agreed between the program user and supplier that a particular program shall be supplied in Fortran, this document shall be used in conjunction with AS681 for steady-state and transient programs. This document also describes how to take advantage of the Fortran CHARACTER storage to extend the information interface between the calling program and the engine subroutine.
Standard

REAL-TIME MODELING METHODS FOR GAS TURBINE ENGINE PERFORMANCE

1995-12-01
HISTORICAL
AIR4548
This SAE Aerospace Information Report (AIR) provides a review of real-time modeling methodologies for gas turbine engine performance. The application of real-time models and modeling methodologies are discussed. The modeling methodologies addressed in this AIR concentrate on the aerothermal portion of the gas turbine propulsion system. Characteristics of the models, the various algorithms used in them, and system integration issues are also reviewed. In addition, example cases of digital models in source code are provided for several methodologies.
Standard

Real-Time Modeling Methods for Gas Turbine Engine Performance

2022-01-20
CURRENT
AIR4548B
This SAE Aerospace Information Report (AIR) provides a review of real-time modeling methodologies for gas turbine engine performance. The application of real-time models and modeling methodologies are discussed. The modeling methodologies addressed in this AIR concentrate on the aerothermal portion of the gas turbine propulsion system. Characteristics of the models, the various algorithms used in them, and system integration issues are also reviewed. In addition, example cases of digital models in source code are provided for several methodologies.
Standard

Real-Time Modeling Methods for Gas Turbine Engine Performance

2013-04-02
HISTORICAL
AIR4548A
This SAE Aerospace Information Report (AIR) provides a review of real-time modeling methodologies for gas turbine engine performance. The application of real-time models and modeling methodologies are discussed. The modeling methodologies addressed in this AIR concentrate on the aerothermal portion of the gas turbine propulsion system. Characteristics of the models, the various algorithms used in them, and system integration issues are also reviewed. In addition, example cases of digital models in source code are provided for several methodologies.
Standard

GAS TURBINE ENGINE STEADY STATE PERFORMANCE PRESENTATION FOR DIGITAL COMPUTER PROGRAMS

1974-04-15
HISTORICAL
AS681C
Steady state engine performance programs discussed in this Standard will be confined to two basic performance categories: preliminary design or specification. Preliminary design programs may vary in scope, but will be representative of the defined engine performance until the engine is defined by a specification. A specification program will accurately represent the engine described by the specification and will identify the appropriate model specification. Normally, the computer program will be the primary source of performance data. Two additional categories of program are status and data reduction interface programs, which are covered by ARP 1211 and 1210 respectively.
Standard

GAS TURBINE ENGINE STEADY-STATE AND TRANSIENT PERFORMANCE PRESENTATION FOR DIGITAL COMPUTER PROGRAMS

1996-09-01
HISTORICAL
AS681G
This Aerospace Standard (AS) provides a method for the presentation of gas turbine engine steady-state and/or transient performance as calculated by means of digital computer programs. It also provides a method for the presentation of gas turbine parametric performance, weight and dimensions by means of digital computer programs. It is intended to facilitate calculations by the program user without unduly restricting the method of calculation used by the program supplier.
Standard

GAS TURBINE ENGINE STEADY STATE PERFORMANCE PRESENTATION FOR DIGITAL COMPUTER PROGRAMS

1982-10-01
HISTORICAL
AS681D
Steady state engine performance programs discussed in this Standard will be confined to two basic performance categories: preliminary design or specification. Preliminary design programs may vary in scope, but will be representative of the defined engine performance until the engine is defined by a specification. A specification program will accurately represent the engine described by the specification and will identify the appropriate model specification. Normally, the computer program will be the primary source of performance data. Two additional categories of program are status and data reduction interface programs, which are covered by ARP 1211 and 1210 respectively.
Standard

GAS TURBINE ENGINE STEADY-STATE AND TRANSIENT PERFORMANCE PRESENTATION FOR DIGITAL COMPUTER PROGRAMS

1991-10-28
HISTORICAL
AS681F
This Aerospace Standard (AS) provides a method for the presentation of gas turbine engine steady-state and/or transient performance as calculated by means of digital computer programs. It also provides a method for the presentation of gas turbine parametric performance, weight and dimensions by means of digital computer programs. It is intended to facilitate calculations by the program user without unduly restricting the method of calculation used by the program supplier.
Standard

Gas Turbine Engine Steady-State and Transient Performance Presentation for Digital Computer Programs

1999-03-01
HISTORICAL
AS681H
This Aerospace Standard (AS) provides the method for presentation of gas turbine engine steady-state and transient performance calculated using digital computer programs. It also provides for the presentation of parametric gas turbine data including performance, weight and dimensions computed by digital computer programs. This standard is intended to facilitate calculations by the program user without unduly restricting the method of calculation used by the program supplier.
X