Refine Your Search

Search Results

Viewing 1 to 3 of 3
Standard

An Assessment of Planar Waves

2021-02-01
CURRENT
AIR5866A
“An Assessment of Planar Waves” provides background on some of the history of planar waves, which are time-dependent variations of inlet recovery, as well as establishing a hierarchy for categorizing various types of planar waves. It further identifies approaches for establishing compression-component and engine sensitivities to planar waves, and methods for accounting for the destabilizing effects of planar waves. This document contains an extensive list and categorization (see Appendix A) of references to aid both the newcomer and the practitioner on this subject. The committee acknowledges that this document addresses only the impact of planar waves on compression-component stability and does not address the impact of planar waves on augmenter rumble, engine structural issues, and/or pilot discomfort.
Standard

Inlet / Engine Compatibility – From Model to Full Scale Development

2011-09-06
HISTORICAL
AIR5687
This document reviews the state of the art for data scaling issues associated with air induction system development for turbine-engine-powered aircraft. In particular, the document addresses issues with obtaining high quality aerodynamic data when testing inlets. These data are used in performance and inlet-engine compatibility analyses. Examples of such data are: inlet recovery, inlet turbulence, and steady-state and dynamic total-pressure inlet distortion indices. Achieving full-scale inlet/engine compatibility requires a deep understanding of three areas: 1) geometric scaling fidelity (referred to here as just “scaling”), 2) impact of Reynolds number, and 3) ground and flight-test techniques (including relevant environment simulation, data acquisition, and data reduction practices).
Standard

Inlet/Engine Compatibility - From Model to Full Scale Development

2016-02-16
CURRENT
AIR5687A
This document reviews the state of the art for data scaling issues associated with air induction system development for turbine-engine-powered aircraft. In particular, the document addresses issues with obtaining high quality aerodynamic data when testing inlets. These data are used in performance and inlet-engine compatibility analyses. Examples of such data are: inlet recovery, inlet turbulence, and steady-state and dynamic total-pressure inlet distortion indices. Achieving full-scale inlet/engine compatibility requires a deep understanding of three areas: 1) geometric scaling fidelity (referred to here as just “scaling”), 2) impact of Reynolds number, and 3) ground and flight-test techniques (including relevant environment simulation, data acquisition, and data reduction practices).
X