Refine Your Search

Search Results

Viewing 1 to 8 of 8
Journal Article

Univariate Analysis for Condition-Based Maintenance: A Case Study

2011-04-12
2011-01-1017
In this paper, we have proposed a Condition-based Maintenance technique for vehicle tire pressure monitoring utilizing univariate statistical analysis. Statistical techniques are very powerful for predicting the future states based on current and previous states of the system or subsystem. Two important statistical techniques ARAR and Holt-Winters have been studied for their robustness to the predictions of such data set. This paper also performs comparative simulation studies to prove the usefulness of both the algorithms based on the data available from wireless sensor nodes. These sensors are directly mounted on tires externally and report the current air pressure to control unit. The control unit performs tire pressure prognosis using univariate statistical technique.
Technical Paper

CAN Crypto FPGA Chip to Secure Data Transmitted Through CAN FD Bus Using AES-128 and SHA-1 Algorithms with A Symmetric Key

2017-03-28
2017-01-1612
Robert Bosch GmBH proposed in 2012 a new version of communication protocol named as Controller area network with Flexible Data-Rate (CANFD), that supports data frames up to 64 bytes compared to 8 bytes of CAN. With limited data frame size of CAN message, and it is impossible to be encrypted and secured. With this new feature of CAN FD, we propose a hardware design - CAN crypto FPGA chip to secure data transmitted through CAN FD bus by using AES-128 and SHA-1 algorithms with a symmetric key. AES-128 algorithm will provide confidentiality of CAN message and SHA-1 algorithm with a symmetric key (HMAC) will provide integrity and authentication of CAN message. The design has been modeled and verified by using Verilog HDL – a hardware description language, and implemented successfully into Xilinx FPGA chip by using simulation tool ISE (Xilinx).
Technical Paper

CAN Bit Rate Configuration

2005-04-11
2005-01-1314
The Controller Area Network (CAN) provides the user with several parameters to configure the bit timing, sampling point, and bit rate. With this flexibility comes some complexity in choosing the correct values for these parameters and properly configuring the bit rate. A given bit rate can be achieved by setting these parameter in more than one way. It is also possible to incorrectly configure these parameters and achieve a close enough bit rate that will allow the system to function but not perform in an optimized manner. This paper discusses how to calculate the bit rate and how to choose some of these parameters. A set of equations were developed and used in an example to configure the bit rate for a PIC18FXX8 CAN controller.
Book

Automotive Systems Engineering - Approach and Verification

2010-11-29
Automotive systems engineering addresses the system throughout its life cycle, including requirement, specification, design, implementation, verification and validation of systems, modeling, simulation, testing, manufacturing, operation and maintenance. This book is the fourth in a series of four volumes on this subject and features 12 papers, published between 2002-2009, that address the challenges and importance of systems approach in system verification and validation, stressing the use of advanced tools and approaches. Topics covered include: Systems integration and verification Software engineering in future automotive systems development Configuration management of the model-based design process Buy the Set and Save!
Book

Automotive Systems Engineering

2010-11-29
Automotive systems engineering addresses the system throughout its life cycle, including requirement, specification, design, implementation, verification and validation of systems, modeling, simulation, testing, manufacturing, operation and maintenance. This four-volume set features 49 papers, originally published from 1999 through 2010, that cover the latest research and developments on various aspects of automotive systems engineering. The four-volume set consists of these individual volumes: Automotive Systems Engineering - Overview Automotive Systems Engineering - Requirements and Testing Automotive Systems Engineering - Modeling Automotive Systems Engineering - Approach and Verification
Book

Automotive Systems Engineering - Requirements and Testing

2010-11-29
Automotive systems engineering addresses the system throughout its life cycle, including requirement, specification, design, implementation, verification and validation of systems, modeling, simulation, testing, manufacturing, operation and maintenance. This book - the second in a series of four volumes on this subject - features 11 papers, published between 2000-2010, that address the challenges and importance of requirements and testing in systems engineering, stressing the use of advanced tools and approaches. Topics covered include: Creating correct requirements Requirement analysis Document management Development Management Architecture for military vehicles Buy the Set and Save! Automotive Systems Engineering The four-volume set consists of these individual volumes: Automotive Systems Engineering - Overview Automotive Systems Engineering - Requirements and Testing Automotive Systems Engineering - Modeling Automotive Systems Engineering - Approach and Verification
Book

Automotive Systems Engineering - Modeling

2010-11-29
Automotive systems engineering addresses the system throughout its life cycle, including requirement, specification, design, implementation, verification and validation of systems, modeling, simulation, testing, manufacturing, operation and maintenance. This book - the third in a series of four volumes on this subject - features 11 papers, published between 1999-2010, that address the challenges and importance of systems modeling, stressing the use of advanced tools and approaches. Topics covered include: Automotive systems modeling Model-based design culture Applications Buy the Set and Save! Automotive Systems Engineering The four-volume set consists of these individual volumes: Automotive Systems Engineering - Overview Automotive Systems Engineering - Requirements and Testing Automotive Systems Engineering - Modeling Automotive Systems Engineering - Approach and Verification
Book

Automotive Systems Engineering - Overview

2010-11-29
Automotive systems engineering addresses the system throughout its life cycle, including requirement, specification, design, implementation, verification and validation of systems, modeling, simulation, testing, manufacturing, operation and maintenance. This book is the first in a series of four volumes on this subject and features 15 papers, published between 2004-2010, that emphasize the importance of systems concepts in the automotive area, and stress the use of advanced tools and approaches. Topics covered include: Technology transfer Six Sigma deployment Systems engineering capability in automotive systems In addition to 11 SAE technical papers, this volume also includes two invited papers: "Systems Engineering Definitions" by editor Subramaniam Ganesan and "Systems Engineering for Military Ground Vehicles" by M. Mazzara and R. Iyer. Buy the Set and Save!
X