Criteria

Text:
Topic:
Author:
Display:

Results

Viewing 1 to 30 of 51
2009-11-03
Technical Paper
2009-32-0013
Kai Schreer, Kai W. Beck, Sören Bernhardt, Ulrich Spicher, Werner Geyer, Stephan Meyer
The trend of higher specific power and increased volumetric efficiency leads to unwanted combustion phenomenon such as knocking, pre-ignition and self-ignition. For four-stroke engines, the literature reports that knocking depends, to a large extent, on the ignition angle, the degree of enrichment and the volumetric efficiency. In recent research, knock investigations in two-stroke engines have only been carried out to a limited extent. This paper discusses an investigation of the influence of various parameters on the knock characteristics of a small, high-speed, two-stroke SI engine. In particular, the degree of enrichment, the volumetric efficiency and the ignition timing serve as the parameters.
2009-11-03
Technical Paper
2009-32-0030
Kai W. Beck, Thomas Heidenreich, Steve Busch, Ulrich Spicher, Tim Gegg, Armin Kölmel
This paper demonstrates the potential of optical sensors in the combustion chamber of a small two-stroke SI engine to detect conditions that hinder an optimal combustion process using emission bands and/or emission lines. The primary focus is on the spectroscopic examination of the combustion radiation emissions cycle-by-cycle. For this purpose, spark-ignition type combustion events, as well as the influence of both the air-fuel-ratio and the fuel type, are investigated on a crank angle resolved basis. Furthermore, an assessment of the radiation emissions of the OH, CH and C2 radicals is made. As a next step, the calculation of a temperature profile inside the combustion chamber is attempted by means of the line-emission-method regarding the thermally excited alkaline metals sodium and potassium. These data enable recognition of diffusion combustion and the detection of inadequate mixture quality.
2011-08-30
Journal Article
2011-01-1947
Markus Luft, Uwe Wagner, Ulrich Spicher, Fatih Sarikoc
Rapeseed oil can be a possible substitute for fossil fuel in Diesel engines. Due to different physical properties of rapeseed oil like higher viscosity and higher compressibility compared to diesel fuel, rapeseed oil cannot be easily used in conventional Diesel engines without modifications. Especially incomplete combustion leads to deposits in the combustion chamber and higher exhaust gas emissions. These unfavorable characteristics are caused primarily by insufficient mixture preparation. The adjustment of the injection system will improve the mixture preparation and the combustion of a Diesel engine, operated with rapeseed oil. The nozzle geometry is the main parameter of the whole injection system chain to realize a better combustion process and so higher efficiency and lower exhaust gas emissions.
2013-10-15
Technical Paper
2013-32-9144
Clemens Hampe, Markus Bertsch, Kai W. Beck, Ulrich Spicher, Steffen Bohne, Georg Rixecker
The two-stroke SI engine is the predominant driving unit in applications that require a high power-to-weight ratio, such as handheld power tools. Regarding the latest regulations in emission limits the main development area is clearly a further reduction of the exhaust emissions. The emissions are directly linked to the combustion processes and the scavenging losses. The optimization of the combustion processes, which represents one of the most challenging fields of research, is still one of the most important keys to enhance the thermal efficiency and reduce exhaust emissions. Regarding future emission regulations for small two-stroke SI engines it is inevitable that the emissions of gases causing the greenhouse effect, like carbon dioxide, need to be reduced. As most small SI engines are carburetted and operate open loop, the mixture formation and the amount of residual gas differs from cycle to cycle [1].
2013-10-15
Journal Article
2013-32-9143
Markus Bertsch, Kai W. Beck, Thomas Matousek, Ulrich Spicher
Small gasoline engines are used in motorcycles and handheld machinery, because of their high power density, low cost and compact design. The reduction of hydrocarbon emissions and fuel consumption is an important factor regarding the upcoming emission standards and operational expenses. The scavenging process of the two-stroke engine causes scavenging losses. A reduction in hydrocarbon emissions due to scavenging losses can be achieved through inner mixture formation using direct injection (DI). The time frame for fuel vaporization is limited using two-stroke SI engines by the high number of revolutions. A high pressure DI system was used to offer fast and accurate injections. An injection pressure of up to 140 MPa was provided by a common rail system, built out of components normally used in automotive engineering. A standard electromagnetic injector is applied for the fuel injection. This injection unit is dimensioned for multi-point injections in diesel engines.
2005-10-24
Technical Paper
2005-01-3688
Maurice Kettner, Markus Rothe, Amin Velji, Ulrich Spicher, Dieter Kuhnert, Reinhard Latsch
Engines with gasoline direct injection promise an increase in efficiency mainly due to the overall lean mixture and reduced pumping losses at part load. But the near stoichiometric combustion of the stratified mixture with high combustion temperature leads to high NOx emissions. The need for expensive lean NOx catalysts in combination with complex operation strategies may reduce the advantages in efficiency significantly. The Bowl-Prechamber-Ignition (BPI) concept with flame jet ignition was developed to ignite premixed lean mixtures in DISI engines. The mainly homogeneous lean mixture leads to low combustion temperatures and subsequently to low NOx emissions. By additional EGR a further reduction of the combustion temperature is achievable. The BPI concept is realized by a prechamber spark plug and a piston bowl. The main feature of the concept is its dual injection strategy.
2005-10-24
Technical Paper
2005-01-3703
Uwe Wagner, Amin Velji, Ulrich Spicher
Different particulate filter systems with an electrical heating for starting the filter regeneration were designed and tested to evaluate the parameters important for a successful filter and heating device layout. These results led to a new filter system with an improved electrical heating module. Particular emphasis was put on a modular design which allows a separate optimization of the different system parts with regard to function, durability and costs. In this paper the different development steps are presented. Experimental results show the performance and limitations for electrically heated particulate traps. The analysis of the experiments was done on the one hand by using data such as temperatures, pressures and exhaust gas composition during the regeneration. On the other hand the assessment of the regeneration rate was done by weighing the filter and optically with non-destructive and partly destructive methods.
2005-10-24
Technical Paper
2005-01-3684
Isabell Gilles-Birth, Sören Bernhardt, Ulrich Spicher, Manfred Rechs
For spark ignition engines, the most effective way to reduce the overall fuel consumption and CO2 emissions respectively is the implementation of gasoline direct injection technology. In comparison to the current wall and air guided systems, the direct injection system of the second generation - the spray guided DI- is the most promising one with respect to fuel economy and emission. In order to exploit its full potential, a thorough combustion process development regarding injector and spark plug design and their positioning within the combustion chamber is essential. Especially multihole injectors offer many degrees of freedom with regard to the nozzle shape and spray pattern. To reduce the development work and costs necessary to identify the ideal nozzle characteristic and spray pattern, reliable CFD models are necessary.
2015-04-14
Journal Article
2015-01-0753
Max Magar, Ulrich Spicher, Stefan Palaveev, Marcus Gohl, Gunther Müller, Christian Lensch-Franzen, Jens Hadler
Abstract In the present paper the results of a set of experimental investigations on LSPI are discussed. The ignition system of a test engine was modified to enable random spark advance in one of the four cylinders. LSPI sequences were successfully triggered and exhibited similar characteristics compared to regularly occurring pre-ignition. Optical investigations applying a high speed camera system enabling a visualization of the combustion process were performed. In a second engine the influence of the physical properties of the considered lubricant on the LSPI frequency was analyzed. In addition different piston ring assemblies have been tested. Moreover an online acquisition of the unburned hydrocarbon emissions in the exhaust gas was performed. The combination of these experimental techniques in the present study provided further insights on the development of LSPI sequences.
2010-04-12
Technical Paper
2010-01-0352
Amin Velji, Kitae Yeom, Uwe Wagner, Ulrich Spicher, Martin Rossbach, Rainer Suntz, Henning Bockhorn
In this work the formation and oxidation of soot inside a direct injection spark ignition engine at different injection and ignition timing was investigated. In order to get two-dimensional data during the expansion stroke, the RAYLIX-technique was applied in the combustion chamber of an optical accessible single cylinder engine. This technique is a combination of Rayleigh-scattering, laser-induced incandescence (LII) and extinction which enables simultaneous measurements of temporally and spatially resolved soot concentration, mean particle radii and number densities. These first investigations show that the most important source for soot formation during combustion are pool fires, i.e. liquid fuel burning on the top of the piston. These pool fires were observed under almost all experimental conditions.
2010-04-12
Journal Article
2010-01-0355
Christoph Dahnz, Kyung-Man Han, Ulrich Spicher, Max Magar, Robert Schiessl, Ulrich Maas
This paper presents the results of a study on reasons for the occurrence of pre-ignition in highly supercharged spark ignition engines. During the study, the phenomena to be taken into account were foremost structured into a decision tree according to their physical working principles. Using this decision tree all conceivable single mechanisms to be considered as reasons for pre-ignition could be derived. In order to judge each of them with respect to their ability to promote pre-ignition in a test engine, experimental investigations as well as numerical simulations were carried out. The interdependence between engine operating conditions and pre-ignition frequency was examined experimentally by varying specific parameters. Additionally, optical measurements using an UV sensitive high-speed camera system were performed to obtain information about the spatial distribution of pre-ignition origins and their progress.
2010-04-12
Technical Paper
2010-01-0600
Christophe Pfister, Soeren Bernhardt, Ulrich Spicher
Spray-guided gasoline direct injection demonstrates great potential to reduce both fuel consumption and pollutant emissions. However, conventional materials used in high-pressure pumps wear severely under fuel injection pressures above 20 MPa as the lubricity and viscosity of gasoline are very low. The use of ceramic components promises to overcome these difficulties and to exploit the full benefits of spray-guided GDI-engines. As part of the Collaborative Research Centre “High performance sliding and friction systems based on advanced ceramics” at Karlsruhe Institute of Technology, a single-piston high-pressure gasoline pump operating at up to 50 MPa has been designed. It consists of 2 fuel-lubricated sliding systems (piston/cylinder and cam/sliding shoe) that are built with ceramic parts. The pump is equipped with force, pressure and temperature sensors in order to assess the behaviour of several material pairs.
2013-04-08
Technical Paper
2013-01-1633
Clemens Hampe, Heiko Kubach, Ulrich Spicher, Georg Rixecker, Steffen Bohne
High frequency ignition (HFI) and conventional transistor coil ignition (TCI) were investigated with an optically accessible single-cylinder research engine to gain fundamental understanding of the chemical reactions taking place prior to the onset of combustion. Instead of generating heat in the gap of a conventional spark plug, a high frequency / high voltage electric field is employed in HFI to form chemical radicals. It is generated using a resonant circuit and sharp metallic tips placed in the combustion chamber. The setup is optimized to cause a so-called corona discharge in which highly energized channels (streamers) are created while avoiding a spark discharge. At a certain energy the number of ionized hydrocarbon molecules becomes sufficient to initiate self-sustained combustion. HFI enables engine operation with highly diluted (by air or EGR) gasoline-air mixtures or at high boost levels due to the lower voltage required.
2013-10-14
Journal Article
2013-01-2571
Helge Dageförde, Thomas Koch, Kai W. Beck, Ulrich Spicher
Particle number measurements during different real world and legislative driving cycles show that catalyst heating, cold and transient engine operation cause increased particle number emissions. In this context the quality of mixture formation as a result of injector characteristics, in-cylinder flow, operation & engine parameters and fuel composition is a major factor. The goal of this paper is to evaluate the influence of different biogenic and alkylate fuels on the gaseous and particle number emission behavior during catalyst heating operation on a single-cylinder DISI engine. The engine is operated with a late ignition timing causing a high exhaust enthalpy flow to heat up the catalyst, a slightly lean global air fuel ratio to avoid high hydrocarbon emissions and a late injection right before the ignition to reduce the coefficient of variance of the indicated mean effective pressure.
2010-10-25
Technical Paper
2010-01-2109
Steffen Kuhnert, Uwe Wagner, Ulrich Spicher, Simon-Florian Haas, Klaus Gabel, Immanuel Kutschera
Diesel engines face difficult challenges with respect to engine-out emissions, efficiency and power density as the legal requirements concerning emissions and fuel consumption are constantly increasing. In general, for a diesel engine to achieve low raw emissions a well-mixed fuel-air mixture, burning at low combustion temperatures, is necessary. Highly premixed diesel combustion is a feasible way to reduce the smoke emissions to very low levels compared to conventional diesel combustion. In order to reach both, very low NOX and soot emissions, high rates of cooled EGR are necessary. With high rates of cooled EGR the NOX formation can be suppressed almost completely. This paper investigates to what extent the trade-off between emissions, fuel consumption and power of a diesel engine can be resolved by highly premixed and low temperature diesel combustion using injection nozzles with reduced injection hole diameters and high pressure fuel injection.
2010-10-25
Technical Paper
2010-01-2271
Stephen Busch, Christian Disch, Heiko Kubach, Ulrich Spicher
Investigations of the fuel injection processes in a spark ignition direct injection engine have been performed for two different fuels. The goal of this research was to determine the differences between isooctane, which is often used as an alternative to gasoline for optical engine investigations, and a special, non-fluorescing, full boiling range multicomponent fuel. The apparent vaporization characteristics of isooctane and the multicomponent fuel were examined in homogeneous operating mode with direct injection during the intake stroke. To this end, simultaneous Mie scattering and planar laser induced fluorescence imaging experiments were performed in a transparent research engine. Both fuels were mixed with 3-Pentanone as a fluorescence tracer. A frequency-quadrupled Nd:YAG laser was used as both the fluorescent excitation source and the light scattering source.
2010-09-28
Technical Paper
2010-32-0061
Kai W. Beck, Fatih Sarikoc, Ulrich Spicher, Hans Van den Hoevel, Martin Duerrwaechter, Heribert Kammerstetter, Tim Gegg, Armin Kölmel
Unstable combustion and high cyclic variations of the in-cylinder pressure associated with low engine running smoothness and high emissions are mainly caused by cyclic variations of the fresh charge composition, the variability of the ignition and the fuel mass. These parameters affect the inflammation, the burn rate and thus the whole combustion process. In this paper, the effects of fluctuating fuel mass on the combustion behavior are shown. Small two-stroke engines require special measuring and testing equipment, especially for measuring the fuel consumption at very low fuel flow rates as well as very low fuel supply pressures. To realize a cycle-resolved measurement of the injected fuel mass, fuel consumption measurement with high resolution and high dynamic response is not enough for this application.
2013-04-08
Technical Paper
2013-01-0563
Christian Disch, Heiko Kubach, Ulrich Spicher, Jürgen Pfeil, Frank Altenschmidt, Uwe Schaupp
Modern gasoline direct injection engines with spray-guided combustion processes require a stable and reliable fuel mixture formation as well as an optimal stratification at time of ignition. Due to the limited time for this process the temporal and spatial analysis of the in-cylinder flow field and its influence is of significant interest. The application of a piezo injector with outward opening nozzle and its capability to realize multiple injections within the compression stroke provides additional degrees of freedom for the stratified engine operation. To improve the performance of this combination a detailed knowledge of the in-cylinder flow field and its interaction with the spray propagation during and after multiple injections is essential. The flow field measurements were applied in an optical borescope single-cylinder research engine using a high-speed particle image velocimetry (HSPIV) setup.
2013-04-08
Journal Article
2013-01-0252
Stefan Palaveev, Max Magar, Heiko Kubach, Robert Schiessl, Ulrich Spicher, Ulrich Maas
This paper presents the results of experimental and numerical investigations on pre-ignition in a series-production turbocharged DISI engine. Previous studies led to the conclusion that pre-ignition can be triggered by auto-ignition of oil droplets generated in the combustion chamber. Analysis of more recent experiments shows that a modification of the engine operation parameters that promotes spray/lubricant interaction also increases pre-ignition frequency, while modifications that enhance the speed of chemical reactions (thereby favoring auto-ignition) have little or no influence. The experimental and numerical findings can be explained if we assume the existence of a substance (originating from lubricant/fuel interaction) that displays extremely short ignition delay times.
2012-10-23
Technical Paper
2012-32-0038
Markus Bertsch, Kai W. Beck, Ulrich Spicher, Armin Kölmel, Ute C. Dawin, Holger Lochmann, Stefan Schweiger
The combustion processes optimization is one of the most important factors to enhancing thermal efficiency and reducing exhaust emissions of combustion engines [1; 2]. Future emission regulations for small two-stroke SI engines require that the emissions of gases causing the greenhouse effect, such as carbon dioxide, to be reduced. One possible way to reduce exhaust gas emissions from two-stroke small off-road engines (SORE) is to use biogenic fuels. Because of their nearly closed carbon dioxide circuit, the emissions of carbon dioxide decrease compared to the use of fossil fuels. Also biogenic fuels have a significant influence on the combustion process and thus the emissions of different exhaust gas components may be reduced. Besides greenhouse gases, several other exhaust gas components need to be reduced because of their toxicity to the human health. For example, aromatic hydrocarbons cause dangerous health problems, and can be reduced by using alkylate fuel.
2012-10-23
Technical Paper
2012-32-0070
Markus Bertsch, Kai Beck, Patrick Ulmerich, Hans Van den Hoevel, Ulrich Spicher
The emission behaviour of an internal combustion engine under test-bed conditions shows differences to the emission behaviour under real in-use conditions. Because of this fact, the developers of combustion engines and the legislator are focussing on the measurement and optimization of real in-use emissions. To this day, the research, the adjustment of the carburettor and the legislation of small handheld engines is performed under test bench conditions, especially conditioned fuel pressure and temperature, as well as air temperature. Also the engines are laid out for two operation points: rated speed with full open throttle and idle speed. This test-procedure is used for all kinds of handheld off-road applications and does not consider the load profile of the different power tools. Especially applications with transient load profiles, for example chainsaws, work in more than two operating points in real use.
1998-02-01
Technical Paper
980139
Frank Geiser, Frank Wytrykus, Ulrich Spicher
Optical measurement technique became more and more common for the last few years. Especially optical fibre technique is often used to detect flame propagation. With optical sensors the ignition process can be investigated with high temporal and spatial resolution. An in-cylinder optical sensor has been developed and tested to analyze the ignition of mixture and luminous emission of burning gas. The sensor consists of eight optical probes fitted in a conventional spark plug. The results show good correlation between measured luminosity and combustion parameters such as load, engine speed, ignition timing and air-fuel mixture ratio. A correlation between development of light intensity and pressure was found. For evaluation of light signals different analysis methods are presented. Furthermore it is shown that the luminosity of the flame can be used to control the combustion process.
1996-10-01
Technical Paper
961922
Matthias Bach, Jorg Reissing, Ulrich Spicher
This paper presents a special optical fiber technique which allows to measure temperatures in SI engines using the emission bands or respectively emission lines of the temperature radiation of diatomic molecules. The measurement technique enables the detection of average temperature in a small volume element. These temperatures are used to determine the local NO concentrations using the extended Zeldovich-mechanism. First, theoretical background of both temperature and NO-determination and measurement technique including optical fiber sensors are described. Finally, the temperature and NO dependence versus crank angle are presented and discussed at different combustion chamber locations for different engine operating conditions.
2006-04-03
Technical Paper
2006-01-1261
Fatih Sarikoc, Maurice Kettner, Amin Velji, Ulrich Spicher, Alina Krause, Alfred Elsaesser
In this paper, results of experimental and numerical investigations of stratified exhaust gas recirculation in a single-cylinder gasoline engine are presented. The engine was operated in spray guided direct injection mode. The radial exhaust gas stratification was achieved by a spatial and temporal separated intake of exhaust gas and fresh air. The spatial separation of both fluids was realized by specially shaped baffles in the inlet ports, which prevent an early mixing up to the inlet valves. The temporally separation was performed by impulse charge valves, with one for the fresh air and one for the exhaust gas. From various possible strategies for time-dependent intake of fresh air and exhaust gas, four different strategies for the exhaust gas stratification were examined.
2006-11-13
Technical Paper
2006-32-0062
Nataliya Hunzinger, Markus Rothe, Ulrich Spicher, Tim Gegg, Martin Rieber, Axel Klimmek, Andreas Jäger
The paper presents an application of a quasi-dimensional (QD) model for the combustion simulation in a two-stroke engine. In contrast to 0D-models the QD-models provide an opportunity to describe the development of the combustion process in dependence on the actual thermodynamic state in the combustion chamber. The QD-models enable to couple the flame propagation with the combustion chamber geometry and with the flow field. An extensive sensitivity analysis is performed for the QD-model by varying the parameters of the QD-model itself and of the operating points. The constructed QD-model is examined under various conditions (engine speed, the delivery ratio and the air to fuel ratio) and shows a good agreement with experimental results.
2006-11-13
Technical Paper
2006-32-0060
Kai Beck, Kai Schreer, Soeren Bernhardt, Ulrich Spicher, Heiko Rosskamp, Tim Gegg
When developing effective exhaust emission reduction measures, a better understanding of the complex working cycle in crankcase scavenged two-stroke gasoline engines. However, in a two-stroke gasoline engine detailed measurement and analysis of combustion data requires significantly more effort, when compared to a lower speed four-stroke engine. Particularly demanding are the requirements regarding the high speed (>10,000 rpm) which inevitably goes along with heavy vibrations and high temperatures of the air cooled cylinders. Another major challenge to the measuring equipment is the increased cleaning demand of the optical sensor surface due to the two-stroke gasoline mixture. In addition, the measuring equipment has to be adapted to the small size engines. Therefore, only a fiber optical approach can deliver insight into the cylinder for analyzing the combustion performance.
2006-10-16
Technical Paper
2006-01-3315
Kyung-Man Han, Amin Velji, Ulrich Spicher
This paper introduces a new measuring and analyzing method for the investigation of the spatial flame propagation in IC engines. Three optical high-speed measuring devices are connected and synchronized in order to detect the flame radiation from different perspectives via fiberoptical endoscopes. The resulting two-dimensional images provide a starting basis for the subsequent reconstruction of the three-dimensional flame geometry. The reconstruction is carried out by a newly developed software tool. The capability of the new methodology has been proven in a first test series. A one-cylinder SI engine with direct-injection is operated in both homogeneous and spray-guided stratified injection mode. Intake flow conditions and air/fuel ratio are varied in order to investigate the effects on flame spread. The volumetric flame developments are analyzed as well as the location of the combustion center in absolute coordinates.
2006-10-16
Technical Paper
2006-01-3377
Werner Sauter, Jürgen Pfeil, Amin Velji, Ulrich Spicher, Nils Laudenbach, Frank Altenschmidt, Uwe Schaupp
The hollow cone spray from a high pressure outward opening nozzle was investigated inside a pressure vessel by means of particle image velocimetry (PIV). The flow velocities of the air outside the spray were measured via PIV in combination with fluorescent seeding particles and optical filters. The high pressure piezo electric injector has an annular nozzle to provide a hollow cone spray with an angle of about 90°. During injection a very strong and stable vortex structure is induced by the fuel spray. Besides the general spray/air interaction, the investigation of double and triple fuel injections was the main focus of this study.
2004-10-25
Technical Paper
2004-01-2922
Heiko Kubach, Amin Velji, Ulrich Spicher, Wolfgang Fischer
Contemporary diesel engines are high-tech power plants that provide high torques at very good levels of efficiency. By means of modern injecting-systems such as Common-Rail Injection, combustion noise and emissions could be influenced positively as well. Diesel engine are therefore used increasingly in top-range and sports cars. Today's production ECUs have no or only very low feedback regarding the process in the combustion chamber. As long as this data is missing, the design of the maps in the ECU can only be a compromise, since production tolerances and aging processes have to be considered in advance. Disturbances in the combustion process may not be detected at all. If more knowledge about the course of combustion is provided, especially the start of combustion (SOC), various operating parameters, such as the pilot injection quantity or the beginning of current feed to the injector, could be adjusted more precisely and individually for every cylinder.
2004-03-08
Technical Paper
2004-01-0035
Maurice Kettner, Juergen Fischer, Andreas Nauwerck, Jan Tribulowski, Ulrich Spicher, Amin Velji, Dieter Kuhnert, Reinhard Latsch
Spark ignited engines with direct injection (DISI) in fuel stratified mode promise an increase in efficiency mainly due to reduced pumping losses at part load. However, the need for expensive lean NOx catalysts may reduce this advantage. Therefore, a Bowl-Prechamber-Ignition (BPI) concept with flame jet ignition was developed to ignite premixed lean mixtures in DISI engines. It is characterised by a combination of a prechamber spark plug and a piston bowl. An important feature of the concept is its dual injection strategy. A pre injection in the inlet stroke produces a homogeneous lean mixture with an air fuel ratio of λ = 1.5 to λ = 1.7. A second injection with a small quantity of fuel is directed towards the piston bowl during the compression stroke. The enriched air fuel mixture of the piston bowl is transported by the pressure difference between main combustion chamber and prechamber into the prechamber.
Viewing 1 to 30 of 51

Filter

  • Range:
    to:
  • Year: