Criteria

Text:
Topic:
Author:
Display:

Results

Viewing 1 to 30 of 94
1990-02-01
Technical Paper
900441
Akram Zahdeh, Naeim Henein, Walter Bryzik
Combustion in a diesel engine during cold starting under normal and border-line conditions was investigated. Experiments were conducted on a single cylinder, air-cooled, 4-stroke-cycle engine in a cold room. Tests covered different fuels, injection timings and ambient temperatures. Motoring tests, without fuel injection indicated that the compression pressure and temperature are dependent on the ambient temperature and cranking speeds. The tests with JP-5, with a static injection timing of 23° BTDC indicated that the engine may operate on the regular 4-stroke-cycle at normal operating ambient temperatures or may skip one cycle before each firing at moderately low temperatures, i.e. operate on an 8-stroke-cycle mode. At lower temperatures the engine may skip two cycles before each firing cycle, i.e. operate on a 12-stroke-cycle mode. These modes were reproducible and were found to depend mainly on the ambient temperature.
1990-02-01
Technical Paper
900687
Paul Sutor, Ewa A. Bardasz, Walter Bryzik
Polyol ester-based diesel engine lubricants which achieve maximum theoretical high-temperature performance have been developed in our laboratories during the past three years. New lubricant basestocks and additives are currently being developed to perform under more severe thermal conditions, anticipated in low heat rejection diesel engines at the turn of the century. In this paper, the status of our current laboratory development and evaluation of new diesel engine lubricants, with high-temperature applicability beyond polyol esters, is summarized. Our final work in the polyol ester class of lubricants, through single-cylinder engine tests, is also presented.
1990-02-01
Technical Paper
900621
Patrick Badgley, Roy Kamo, Walter Bryzik, Ernest Schwarz
A previous paper (1)* described the performance improvements which can be obtained by using an “adiabatic” (uncooled) engine for military trucks. The fuel economy improved 16% to 37% (depending upon the duty cycle) and was documented by dynamometer testing and vehicle testing and affirmed by vehicle simulation. The purpose of this paper is to document a NATO cycle 400 hour durability test which was performed on the same model adiabatic engine. The test results showed that the engine has excellent durability, low lubricating oil consumption and minimal deposits.
1991-02-01
Technical Paper
910457
Melvin E. Woods, Ernest Schwarz, Walter Bryzik
An advanced low heat rejection engine concept has been selected based on a trade-off between thermal insulating performance and available technology. The engine concept heat rejection performance is limited by available ring-liner tribology and requires cylinder liner cooling to control the piston top ring reversal temperature. This engine concept is composed of a titanium piston, headface plate and cylinder liner insert with thermal barrier coatings. Monolithic zirconia valve seat inserts, and thermal barrier coated valves and intake-exhaust ports complete the insulation package. The tribological system is composed of chrome oxide coated cylinder, M2 steel top piston ring, M2 steel valve guides, and an advanced polyol ester class lubricant.
1979-02-01
Technical Paper
790645
R. Kamo, Walter Bryzik
Recent developments of high performance ceramics have given a new impetus for the advancement of heat engines. The thermal efficiencies of the Otto, Diesel, Brayton and the Stirling cycle can now be improved by higher operating temperatures, reduced heat loss, and exhaust energy recovery. Although physical and chemical properties of the high performance ceramics have been improved significantly, they still fall short of meeting the requirements necessary for application and commercialization of advanced heat engine concepts. Aside from the need for greater strength, the problems of consistency, quality, design, material inspection, insulative properties, oxidation and other important features must be solved before high performance ceramics can be considered a viable material for advanced heat engines. Several approaches in developing an adiabatic engine design in the laboratory are shown.
1988-02-01
Technical Paper
880193
Paul C. Glance, Walter Bryzik, Jayant Mahishi, Jeff Spehar
In the past two years, significant progress has been made in the application of ceramic-matrix composite materials to low heat rejection engine components. However, past R&D programs have identified a number of critical areas which require additional effort including: Life Prediction Methodology, Non-Destructive Testing, Design Methods, Data Base Development, and Verification of Design Rules. This paper discusses an integrated design methodology for addressing these research needs. The paper concludes with a specific example of a ceramic fiber-reinforced metal matrix composite piston which has been designed for application to advanced adiabatic engines.
1987-02-01
Technical Paper
870018
Roy Kamo, Walter Bryzik, Paul Glance
Since the early inception of the adiabatic diesel engine in 1974, marked progress has taken place as a result of research efforts performed all over the world. The use of ceramics for heat engines in production applications has been limited to date, but is growing. Ceramic use for production heat engine has included: combustion prechambers, turbochargers, exhaust port liners, top piston ring inserts, glow plugs, oxygen sensors; and additional high temperature friction and wear components. The potential advantages of an adiabatic engine vary greatly with specific application (i.e., commercial vs. military, stationary vs. vehicular, etc.), and thus, a better understanding of the strengths and weaknesses (and associated risks) of advanced adiabatic concepts with respect to materials, tribology, cost, and payoff must be obtained.
1987-02-01
Technical Paper
870157
Paul Sutor, Walter Bryzik
The U.S. Army Tank-Automotive Command is developing a future high power, low heat rejection military diesel engine. Performance requirements for the engine result in a predicted cylinder wall temperature of 560°C at the top piston ring reversal location. Thermal stresses imposed on the lubricant will therefore be unusually severe. Midwest Research Institute is developing the tribological system for this engine. A new general concept for high temperature diesel engine lubrication has been formulated. Our concept includes advanced synthetic liquid lubricants, solid lubricant additives, and self-lubricating materials. The lubricants, additives, and materials that have been selected for initial laboratory and engine evaluations of the concept are reported here.
1985-02-25
Technical Paper
850356
K. L. Hoag, M. C. Brands, Walter Bryzik, U.S. Army
Joint development of the adiabatic engine by Cummins Engine Company and the U. S. Army began with a feasibility analysis ten years ago. The effort was initially driven by the expectation of substantial performance improvement, a reduction in cooling system size, and several additional benefits. Program emphasis turned quickly to experimentation with the goal of demonstrating the feasibility of the adiabatic engine in working hardware. Several significant achievements were realized as have been reported earlier. Further development of the adiabatic engine is expected to be more evolutionary, paced by available technology in the areas of materials and tribology. Analysis capability necessary for insulated engine development has been found to be inadequate. Additional effort has gone into the development and validation of insulated engine analysis tools, both for cycle simulation and structural modeling.
1983-02-01
Technical Paper
830314
Walter Bryzik, Roy Kamo
This paper discusses the goals, progress, and future plans of the TACOM/Cummins Adiabatic Engine Program. The Adiabatic Engine concept insulates the diesel combustion chamber with high temperature materials to allow hot operation near an adiabatic operation condition. Additional power and improved efficiency derived from this concept occur because thermal energy, normally lost to the cooling and exhaust systems, is converted to useful power through the use of turbomachinery and high-temperature materials. Engine testing has repeatedly demonstrated the Adiabatic Engine to be the most fuel efficient engine in the world with multi-cylinder engine performance levels of 0.285 LB/BHP-HR (48% thermal efficiency) at 450 HP representative. Installation of an early version of the Adiabatic Engine within a military 5 ton truck has been completed, with initial vehicle evaluation successfully accomplished.
1984-02-01
Technical Paper
840014
R. P. Walson, I. Kubo, V. Sudhakar, Walter Bryzik, R. P. Graham
This paper documents the successful operation of a modified Cummins T46 turbocharger with a ceramic rotor. This turbocharger is modified to incorporate a 4.6 inch diameter ceramic turbine rotor (pressureless sintered silicon nitride) on the hot end. These results document the most complete ceramic turbine rotor performance map, for a large ceramic turbocharger rotor, available to date.
1984-02-01
Technical Paper
840428
R. Kamo, Walter Bryzik
Cummins Engine Company, Inc. and the U.S. Army have been jointly developing an adiabatic turbocompound engine during the last nine years. Although progress in the early years was slow, recent developments in the field of advanced ceramics have made it possible to make steady progress. It is now possible to reconsider the temperature limitation imposed on current heat engines and its subsequent influence on higher engine efficiency when using an exhaust energy utilization system. This paper presents an adiabatic turbocompound diesel engine concept in which high performance ceramics are used in its design. The adiabatic turbocompound engine will enable higher operating temperatures, reduced heat loss, and higher exhaust energy recovery, resulting in higher thermal engine efficiency. This paper indicates that the careful selection of ceramics in engine design is essential.
1981-02-01
Technical Paper
810070
Roy Kamo, Walter Bryzik
This paper describes the progress on the Cummins-TARADCOM adiabatic turbocompound diesel engine development program. An adiabatic diesel engine system adaptable to the use of high performance ceramics which hopefully will enable higher operating temperatures, reduced heat loss, and turbo-charged exhaust energy recovery is presented. The engine operating environments as well as the thermal and mechanical loadings of the critical engine components are covered. Design criteria are presented and techniques leading to its fulfillment are shown. The present shortcomings of the high performance ceramic design in terms of meeting reliability and insulation targets are discussed, and the needs for composite designs are shown. A ceramic design methodology for an insulated engine component is described and some of the test results are shown. Other possible future improvements such as the minimum friction-unlubricated engine through the use of ceramics are also described.
1991-02-01
Technical Paper
910752
Stanley L. Marek, Naeim A. Henein, Walter Bryzik
Abstract The effect of many operating parameters on the instantaneous frictional (IFT) torque was determined experimentally in a single cylinder diesel engine. The method used was the (P - ω)method developed earlier at Wayne State University. The operating parameters were load, lubricating oil grade, oil, temperature and engine speed. Also IFT was determined under simulated motoring conditions, commonly used in engine friction measurements. The results showed that the motoring frictional torque does not represent that under firing conditions even under no load. The error reached 31.4% at full load. The integrated frictional torque over the whole cycle and the average frictional torque were determined. A comparison of the average frictional torque under load was compared with the average motoring torque.
2011-04-12
Technical Paper
2011-01-1203
Mufaddel Dahodwala, Vinay Nagaraju, Kaushik Acharya, Walter Bryzik, Naeim Henein
The use of biodiesel and its blends with ultra low sulfur diesel (ULSD) is gaining significant importance due to its ability to burn in conventional diesel engines with minor modifications. However the chemical and physical properties of biodiesel are different compared to the conventional ULSD. These differences directly impact the injection, spray formation, auto ignition and combustion processes which in turn affect the engine-out emissions. To understand the effect of fueling with B-20, tests were conducted on a single cylinder 0.42L direct injection research diesel engine. The engine is equipped with a common rail injection system, variable EGR and swirl control systems and was operated at a constant engine speed of 1500 rpm and 3 bar IMEP to simulated turbocharged conditions. Injection timing and duration were adjusted with B-20 at different locations of peak premixed combustions (LPPC) and two different swirl ratios to achieve 3 bar IMEP.
2006-04-03
Technical Paper
2006-01-0076
N. A. Henein, A. Bhattacharyya, J. Schipper, A. Kastury, Walter Bryzik
The fuel injection pressure and the swirl motion have a great impact on combustion in small bore HSDI diesel engines running on the conventional or advanced combustion concepts. This paper examines the effects of injection pressure and the swirl motion on engine-out emissions over a wide range of EGR rates. Experiments were conducted on a single cylinder, 4-valve, direct injection diesel engine equipped with a common rail injection system. The pressures and temperatures in the inlet and exhaust surge tanks were adjusted to simulate turbocharged engine conditions. The load and speed of the engine were typical to highway cruising operation of a light duty vehicle. The experiments covered a wide range of injection pressures, swirl ratios and injection timings. Engine-out emission measurements included hydrocarbons, carbon monoxide, smoke (in Bosch Smoke Units, BSU) and NOx.
2010-04-12
Journal Article
2010-01-0567
Naeim A. Henein, Walter Bryzik, Ahmed Abdel-Rehim, Ashish Gupta
Ion current sensors have been considered for the feedback electronic control of gasoline and diesel engines and for onboard vehicles powered by both engines, while operating on their conventional cycles or on the HCCI mode. The characteristics of the ion current signal depend on the progression of the combustion process and the properties of the combustion products in each engine. There are large differences in the properties of the combustible mixture, ignition process and combustion in both engines, when they operate on their conventional cycles. In SI engines, the charge is homogeneous with an equivalence ratio close to unity, ignition is initiated by an electric spark and combustion is through a flame propagating from the spark plug into the rest of the charge.
2009-11-02
Journal Article
2009-01-2712
Marcis Jansons, Kan Zha, Radu Florea, Dinu Taraza, Naeim Henein, Walter Bryzik
Fuel wall impingement commonly occurs in small-bore diesel engines. Particularly during engine starting, when wall temperatures are low, the evaporation rate of fuel film remaining from previous cycles plays a significant role in the autoignition process that is not fully understood. Pre-injection chemiluminescence (PIC), resulting from low-temperature oxidation of evaporating fuel film and residual gases, was measured over 3200 μsec intervals at the end of the compression strokes, but prior to fuel injection during a series of starting sequences in an optical diesel engine. These experiments were conducted to determine the effect of this parameter on combustion phasing and were conducted at initial engine temperatures of 30, 40, 50 and 60°C, at swirl ratios of 2.0 and 4.5 at 1000 RPM. PIC was determined to increase and be highly correlated with combustion phasing during initial cycles of the starting sequence.
2010-04-12
Technical Paper
2010-01-1123
Jagdish Nargunde, Chandrasekharan Jayakumar, Anubhav Sinha, Kaushik Acharya, Walter Bryzik, Naeim Henein
JP-8 is an aviation turbine engine fuel recently introduced for use in military ground vehicle applications and generators which are mostly powered by diesel engines. Many of these engines are designed and developed for commercial use and need to be adapted for military applications. This requires more understanding of the auto- ignition and combustion characteristics of JP-8 under different engine operating conditions. This paper presents the results of a comparative analysis of an engine operation using JP-8 and ultra low sulfur diesel fuel (ULSD). Experiments were conducted on 0.42 liter single cylinder, high speed direct injection (HSDI) diesel engine equipped with a common rail injection system. The results indicate that the distillation properties of fuel have an effect on its vaporization rate. JP-8 evaporated faster and had shorter ignition delay as compared to ULSD. The fuel economy with JP-8 was better than ULSD.
1992-02-01
Technical Paper
920541
Melvin Woods, Walter Bryzik, Ernest Schwarz
1993-03-01
Technical Paper
931021
Walter Bryzik, Ernest Schwarz, Roy Kamo, Melvin Woods
A high output experimental single cylinder diesel engine that was fully coated and insulated with a ceramic slurry coated combustion chamber was tested at full load and full speed. The cylinder liner and cylinder head mere constructed of 410 Series stainless steel and the top half of the articulated piston and the cylinder head top deck plate were made of titanium. The cylinder liner, head plate and the piston crown were coated with ceramic slurry coating. An adiabaticity of 35 percent was predicted for the insulated engine. The top ring reversal area on the cylinder liner was oil cooled. In spite of the high boost pressure ratio of 4:1, the pressure charged air was not aftercooled. No deterioration in engine volumetric efficiency was noted. At full load (260 psi BMEP) and 2600 rpm, the coolant heat rejection rate of 12 btu/hp.min. was achieved. The original engine build had coolant heat rejection of 18.3 btu/hp-min and exhaust energy heat rejection of 42.3 btu/hp-min at full load.
1993-03-01
Technical Paper
930988
Ernest Schwarz, Michael Reid, Walter Bryzik, Eugene Danielson
The purpose of this paper is to investigate combustion and performance characteristics for an advanced class of diesel engines which support future Army ground propulsion requirements of improved thermal efficiency, reduced system size and weight, and enhanced mobility. Advanced ground vehicle engine research represents a critical building block for future Army vehicles. Unique technology driven engines are essential to the development of compact, high-power density ground propulsion systems. Through an in-house analysis of technical opportunities in the vehicle ground propulsion area, a number of dramatic payoffs have been identified as being achievable. These payoffs require significant advances in various areas such as: optimized combustion, heat release phasing, and fluid flow/fuel spray interaction. These areas have been analyzed in a fundamental manner relative to conventional and low heat rejection “adiabatic” engines.
1993-03-01
Technical Paper
930985
Eugene Danielson, David Turner, Joseph Elwart, Walter Bryzik
High thermal stresses in the cylinder heads of low heat rejection (LHR) engines can lead to low cycle fatigue failure in the head. In order to decrease these stresses to a more acceptable level, novel designs are introduced. One design utilizes scallops in the bridge area, and three others utilize a high-strength, low thermal conductivity titanium faceplate inserted into the firedeck (combustion face) of a low heat rejection engine cylinder head. The faceplates are 5mm thick disks that span the firedeck from the injector bore to approximately 10mm outside of the cylinder liner. Large-scale finite element models for these four different LHR cylinder head configurations were created, and used to evaluate their strength performance on a pass/fail basis. The complex geometry of this cylinder head required very detailed three-dimensional analysis techniques, especially in the valve bridge area. This area is finely meshed to allow for accurate determination of stress gradients.
1998-02-23
Technical Paper
980888
Roy Kamo, Nagesh S. Mavinahally, Lloyd Kamo, Walter Bryzik, Michael Reid
The experimental emissions testing of a turbocharged six cylinder Caterpillar 3116 diesel engine converted to the Miller cycle operation was conducted. Delayed intake valve closing times were also investigated. Effects of intake valve closing time, injection time, and insulation of piston, head, and liner on the emission characteristics of the Miller cycle engine were experimentally verified. Superior performance and emission characteristic was achieved with a LHR insulated engine. Therefore, all emission and performance comparisons are made with LHR insulated standard engine with LHR insulated Miller cycle engine. Particularly, NOx, CO2, HC, smoke and BSFC data are obtained for comparison. Effect of increasing the intake boost pressure on emission was also studied. Poor emission characteristics of the Miller cycle engine are shown to improve with increased boost pressure. Performance of the insulated Miller cycle engine shows improvement in BSFC when compared to the base engine.
1998-02-23
Technical Paper
980164
Dinu Taraza, Naeim A. Henein, Walter Bryzik
The local variation of the crankshaft's speed in a multicylinder engine is determined by the resultant gas-pressure torque and the torsional deformation of the crankshaft. Under steady-state operation, the crankshaft's speed has a quasi-periodic variation and its harmonic components may be obtained by a Discrete Fourier Transform (DFT). Based on a lumped-mass model of the shafting, correlations are established between the harmonic components of the speed variation and the corresponding components of the engine torque. These correlations are used to calculate the gas-pressure torque or the indicated mean effective pressure (IMEP) from measurements of the crankshaft's speed.
1998-02-23
Technical Paper
980885
Nagesh S. Mavinahally, Roy Kamo, Lloyd Kamo, Walter Bryzik, Michael Ried
This paper deals with the analysis of heat release characteristics of an insulated turbocharged, six cylinder, DI contemporary diesel engine. The engine is fully insulated with thin thermal barrier coatings. Effect of insulation on the heat release was experimentally verified. Tests were carried over a range of engine speeds at 100%, 93%, 75% and 50% of rated torque. Fuel injection system was instrumented to obtain injection pressure characteristics. The study shows that rate of heat release, particularly in the major portion of the combustion, is higher for the insulated engine. Improvement in heat release and performance are primarily attributed to reduction in heat transfer loss due to the thin thermal barrier coating. Injection pressure at the rated speed and torque was found to be 138 MPa and there was no degradation of combustion process in the insulated engine. Improvements in BSFC at 93% load are 3.25% and 6% at 1600 and 2600 RPM, respectively.
1997-02-24
Technical Paper
970203
Lloyd S. Kamo, Ardy S. Kleyman, Walter Bryzik, Milad Mekari
Experimental results focused towards developing tribological surface coatings coupled with liquid lubricant boundary layer effects, for advanced high temperature military diesel engine applications are presented. The primary focus of this work is in the area of advanced, low heat rejection (LHR) high output diesel engines, where high temperature boundary lubrication between the piston ring and the cylinder liner wall surface is critical for successful engine operation. The target temperature focused upon in our research is an operating top ring reversal (TRR) temperature of approximately 538°C. The technology advancement used for this application involves treating porous iron oxide/titanium oxide (Fe2O3/TiO2) and molybdenum (Mo) based composite thermal sprayed coatings with chemical binders to improve coating strength, integrity, and tribological properties. This process dramatically decreases open porosity to form an almost monolithic appearing coating at the surface1.
1997-02-24
Technical Paper
970204
Roy Kamo, Walter Bryzik, Michael Reid, Melvin Woods
Thermal barrier coatings are becoming increasingly important in providing thermal insulation for heat engine components. Thermal insulation reduces in-cylinder heat transfer from the engine combustion chamber as well as reducing component structural temperatures. Containment of heat also contributes to increased in-cylinder work and offers higher exhaust temperatures for energy recovery. Lower component structural temperatures will result in greater durability. Advanced ceramic composite coatings also offer the unique properties that can provide reductions in friction and wear. Test results and analysis to evaluate the performance benefits of thin thermal barrier coated components in a single cylinder diesel engine are presented.
1992-02-01
Technical Paper
920005
Naeim A. Henein, Akram R. Zahdeh, Mahmoud K. Yassine, Walter Bryzik
Combustion instability is investigated during the cold starting of a single cylinder, direct injection, 4-stroke-cycle, air-cooled diesel engine. The experiments covered fuels of different properties at different ambient air temperatures and injection timings. The analysis showed that the pattern of misfiring (skipping) is not random but repeatable. The engine may skip once (8-stroke-cycle operation) or twice (12-stroke-cycle operation) or more times. The engine may shift from one mode of operation to another and finally run steadily on the 4-stroke cycle. All the fuels tested produced this type of operation at different degrees. The reasons for the combustion instability were analyzed and found to be related to speed, residual gas temperature and composition, accumulated fuel and ambient air temperature.
1992-02-01
Technical Paper
920544
Eugene Danielson, Joseph Elwart, Walter Bryzik, David Turner
Abstract A large scale, high resolution, finite element methodology for analysis of generic thermomechanical behavior of complex, low heat rejection engine components has been developed. This paper describes this process and presents an example evaluation of a low heat rejection cylinder head. Because of symmetry considerations, a one cylinder section of the head was modeled. However, the geometric nature of this cylinder head section required very precise three-dimensional analysis techniques. The completed three-dimensional model contains 40,696 elements and 48,536 nodes. The results of this example model show high stresses at the valve bridge and injector bore. These stresses result from a constrained thermal expansion of the head, and are generally compressive and radial in nature. A comparison of three different material types indicated that two of the three exceeded, and one was below the elastic limit.
Viewing 1 to 30 of 94

Filter

  • Range:
    to:
  • Year: