Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

A Turbulent Jet Ignition Pre-Chamber Combustion System for Large Fuel Economy Improvements in a Modern Vehicle Powertrain

2010-05-05
2010-01-1457
Turbulent Jet Ignition is an advanced pre-chamber initiated combustion system for an otherwise standard spark ignition engine found in current on-road vehicles. This next-generation pre-chamber design overcomes previous packaging obstacles by simply replacing the spark plug in a modern four-valve, pent roof spark ignition engine. Turbulent Jet Ignition enables very fast burn rates due to the ignition system producing multiple, distributed ignition sites, which consume the main charge rapidly and with minimal combustion variability. The fast burn rates allow for increased levels of dilution (lean burn and/or EGR) when compared to conventional spark ignition combustion, with dilution levels being comparable to other low temperature combustion technologies (homogeneous charge compression ignition - HCCI) without the complex control drawbacks.
Journal Article

The Depth Limits of Eddy Current Testing for Defects: A Computational Investigation and Smooth-Shaped Defect Synthesis from Finite Element Optimization

2015-04-14
2015-01-0595
This paper presents a computational investigation of the validity of eddy current testing (ECT) for defects embedded in steel using parametrically designed defects. Of particular focus is the depths at which defects can be detected through ECT. Building on this we characterize interior defects by parametrically describing them and then examining the response fields through measurement. Thereby we seek to establish the depth and direction of detectable cracks. As a second step, we match measurements from eddy current excitations to computed fields through finite element optimization. This develops further our previously presented methods of defect characterization. Here rough contours of synthesized shapes are avoided by a novel scheme of averaging neighbor heights rather than using complex Bézier curves, constraints and such like. This avoids the jagged shapes corresponding to mathematically correct but unrealistic synthesized shapes in design and nondestructive evaluation.
Journal Article

Combustion Visualization, Performance, and CFD Modeling of a Pre-Chamber Turbulent Jet Ignition System in a Rapid Compression Machine

2015-04-14
2015-01-0779
Turbulent jet ignition is a pre-chamber ignition enhancement method that produces a distributed ignition source through the use of a chemically active turbulent jet which can replace the spark plug in a conventional spark ignition engine. In this paper combustion visualization and characterization was performed for the combustion of a premixed propane/air mixture initiated by a pre-chamber turbulent jet ignition system with no auxiliary fuel injection, in a rapid compression machine. Three different single orifice nozzles with orifice diameters of 1.5 mm, 2 mm, and 3 mm were tested for the turbulent jet igniter pre-chamber over a range of air to fuel ratios. The performance of the turbulent jet ignition system based on nozzle orifice diameter was characterized by considering both the 0-10 % and the 10-90 % burn durations of the pressure rise due to combustion.
Technical Paper

Impact of CO2 Dilution on Ignition Delay Times of Full Blend Gasolines in a Rapid Compression Machine

2021-09-21
2021-01-1199
Autoignition delay times of two full blend gasoline fuels (high and low RON) were explored in a rapid compression machine. CO2 dilution by mass was introduced at 0%, 15%, and 30% levels with the O2:N2 mole ratio fixed at 1:3.76. This dilution strategy is used to represent exhaust gas recirculation (EGR) substitution in spark ignition (SI) engines by using CO2 as a surrogate for major EGR constituents(N2, CO2, H2O). Experiments were conducted over the temperature range of 650K-900K and at 10 bar and 20 bar compressed pressure conditions for equivalence ratios of (Φ =) 0.6-1.3. The full blend fuels were admitted directly into the combustion chamber for mixture preparation using the direct test chamber (DTC) approach. CO2 addition retarded the autoignition times for the fuels studied here. The retarding effect of the CO2 dilution was more pronounced in the NTC region when compared to the lower and higher temperature range.
Technical Paper

Ultra-Lean and High EGR Operation of Dual Mode, Turbulent Jet Ignition (DM-TJI) Engine with Active Pre-chamber Scavenging

2020-04-14
2020-01-1117
Continuous efforts to improve thermal efficiency and reduce exhaust emissions of internal combustion engines have resulted in development of various solutions towards improved lean burn ignition systems in spark ignition engines. The Dual Mode, Turbulent Jet Ignition (DM-TJI) system is one of the leading technologies in that regard which offers higher thermal efficiency and reduced NOx emissions due to its ability to operate with very lean or highly dilute mixtures. Compared to other pre-chamber ignition technologies, the DM-TJI system has the distinct capability to work with a very high level of EGR dilution (up to ~40%). Thus, this system enables the use of a three-way catalyst (TWC). Auxiliary air supply for pre-chamber purge allows this system to work with such high EGR dilution rate. This work presents the results of experimental investigation carried out with a Dual Mode, Turbulent Jet Ignition (DM-TJI) optical engine equipped with a cooled EGR system.
Journal Article

Optical Engine Operation to Attain Piston Temperatures Representative of Metal Engine Conditions

2017-03-28
2017-01-0619
Piston temperature plays a major role in determining details of fuel spray vaporization, fuel film deposition and the resulting combustion in direct-injection engines. Due to different heat transfer properties that occur in optical and all-metal engines, it becomes an inevitable requirement to verify the piston temperatures in both engine configurations before carrying out optical engine studies. A novel Spot Infrared-based Temperature (SIR-T) technique was developed to measure the piston window temperature in an optical engine. Chromium spots of 200 nm thickness were vacuum-arc deposited at different locations on a sapphire window. An infrared (IR) camera was used to record the intensity of radiation emitted by the deposited spots. From a set of calibration experiments, a relation was established between the IR camera measurements of these spots and the surface temperature measured by a thermocouple.
Journal Article

Experimental Studies of a Liquid Propane Auxiliary Fueled Turbulent Jet Igniter in a Rapid Compression Machine

2016-04-05
2016-01-0708
Lean combustion is a promising combustion technology that has the potential to improve engine efficiency while decreasing emissions. One reason why lean combustion has not been more widely implemented is that as the air-fuel ratio increases, the resulting flame propagation speed becomes slower and combustion becomes unstable. Turbulent jet ignition is a pre-chamber ignition enhancement concept that facilitates ultra-lean combustion by using a hot combusting jet as a distributed ignition source. The jet penetration allows for shorter flame travel distances, which decreases the overall burn duration and improves stability. By using a rich mixture in the pre-chamber, the pre-chamber mixture is easily ignitable and the transport of chemically active radical species and unburned fuel into the main-chamber charge improves ignition quality.
Technical Paper

Rain-Adaptive Intensity-Driven Object Detection for Autonomous Vehicles

2020-04-14
2020-01-0091
Deep learning based approaches for object detection are heavily dependent on the nature of data used for training, especially for vehicles driving in cluttered urban environments. Consequently, the performance of Convolutional Neural Network (CNN) architectures designed and trained using data captured under clear weather and favorable conditions, could degrade rather significantly when tested under cloudy and rainy conditions. This naturally becomes a major safety issue for emerging autonomous vehicle platforms relying on CNN based object detection methods. Furthermore, despite a noticeable progress in the development of advanced visual deraining algorithms, they still have inherent limitations for improving the performance of state-of-the-art object detection. In this paper, we address this problem area by make the following contributions.
Technical Paper

The Effect of Exhaust Gas Recirculation (EGR) on Fundamental Characteristics of Premixed Methane/Air Flames

2020-04-14
2020-01-0339
Over the years, many studies have examined the natural gas flame characteristics with either CO2, H2O, or N2 dilution in order to investigate the exhaust gas recirculation (EGR) effect on the performance of natural gas vehicles. However, studies analyzing the actual EGR concentration are very scarce. In the present study, spherically expanding flames were employed to investigate the EGR effect on the laminar flame speed (LFS) and the burned gas Markstein length (Lb) of premixed CH4/air flames at 373 K and 3 bar. The EGR mixture was imitated with a mixture of 9.50% CO2 + 19.01% H2O + 71.49% N2 by mole. EGR ratios of 0%, 5%, 10%, and 15% were tested. Experimental results show that LFS values are lowered by 20-23%, 38-43% and 53-54% due to 5%, 10% and 15% EGR, respectively. Additionally, it was observed that Lb values slightly increase at high equivalence and EGR ratios, where CH4 flames are more stable and more stretched.
Technical Paper

Engine Calibration Using Global Optimization Methods with Customization

2020-04-14
2020-01-0270
The automotive industry is subject to stringent regulations in emissions and growing customer demands for better fuel consumption and vehicle performance. Engine calibration, a process that optimizes engine performance by tuning engine controls (actuators), becomes challenging nowadays due to significant increase of complexity of modern engines. The traditional sweep-based engine calibration method is no longer sustainable. To tackle the challenge, this work considers two powerful global optimization methods: genetic algorithm (GA) and Bayesian optimization for steady-state engine calibration for single speed-load point. GA is a branch of meta-heuristic methods that has shown a great potential on solving difficult problems in automotive engineering. Bayesian optimization is an efficient global optimization method that solves problems with computationally expensive testing such as hyperparameter tuning in deep neural network (DNN), engine testing, etc.
Technical Paper

Effect of Changing Compression Ratio on Ignition Delay Times of Iso-Octane in a Rapid Compression Machine

2020-04-14
2020-01-0338
Previous studies have shown that several facility dependent factors can influence ignition delay times measured in a rapid compression machine. Compression ratio variation represents one such aspect of many facility-to facility differences in RCMs, and can have a major impact on measured ignition delay times due to changes in surface-area-to-volume ratio, initial conditions and compression duration even when the same compressed conditions are maintained. In this study, iso-octane, which exhibits two stage ignition delay and has a pronounced negative temperature coefficient (NTC) region, is used to investigate the effects of changing compression ratio on ignition delay. Resulting trends are also compared to previous results obtained with ethanol, which has very different combustion properties. Experiments were carried out for rich mixtures (ϕ = 1.3) of iso-octane and air over a compressed temperature range of 675-900 K at 20 bar compressed pressure.
Journal Article

Visualization of Propane and Natural Gas Spark Ignition and Turbulent Jet Ignition Combustion

2012-10-23
2012-32-0002
This study focuses on the combustion visualization of spark ignition combustion in an optical single cylinder engine using natural gas and propane at several air to fuel ratios and speed-load operating points. Propane and natural gas fuels were compared as they are the most promising gaseous alternative fuels for reciprocating powertrains, with both fuels beginning to find wide market penetration on the fleet level across many regions of the world. Additionally, when compared to gasoline, these gaseous fuels are affordable, have high knock resistance and relatively low carbon content and they do not suffer from the complex re-fueling and storage problems associated with hydrogen.
Journal Article

Progress in Camless Variable Valve Actuation with Two-Spring Pendulum and Electrohydraulic Latching

2013-04-08
2013-01-0590
Camless Variable Valve Actuation (VVA) technologies have been known for improving fuel economy, reducing emissions, and enhancing engine performance. VVA can be divided into electro-magnetic, electro-hydraulic, and electro-pneumatic actuation. A family of camless VVA designs (called LGD-VVA or Gongda-VVA) has been presented in an earlier SAE publication (SAE 2007-01-1295) that consists of a two-spring actuation, a bypass passage, and an electrohydraulic latch-release mechanism. The two-spring pendulum system is used to provide efficient conversion between the moving mass kinetic energy and the spring potential energy for reduced energy consumption and to be more robust to the operational temperature than the conventional electrohydraulic actuation; and the electrohydraulic mechanism is intended for latch-release function, energy compensation and seating velocity control.
Journal Article

Air-to-Fuel and Dual-Fuel Ratio Control of an Internal Combustion Engine

2009-11-02
2009-01-2749
Air-to-fuel (A/F) ratio is the mass ratio of the air-to-fuel mixture trapped inside a cylinder before combustion begins, and it affects engine emissions, fuel economy, and other performances. Using an A/F ratio and dual-fuel ratio control oriented engine model, a multi-input-multi-output (MIMO) sliding mode control scheme is used to simultaneously control the mass flow rate of both port fuel injection (PFI) and direct injection (DI) systems. The control target is to regulate the A/F ratio at a desired level (e.g., at stoichiometric) and fuel ratio (ratio of PFI fueling vs. total fueling) to any desired level between zero and one. A MIMO sliding mode controller was designed with guaranteed stability to drive the system A/F and fuel ratios to the desired target under various air flow disturbances.
Technical Paper

Tribological Performance Assessment of Abradable Powder Coated Pistons Considering Piston Skirt Geometry and Surface Topography

2021-09-21
2021-01-1231
Surface coatings are one of the most widely used routes to enhance the tribological properties of cylinder kits due to effective sealing capability with low friction coefficient and high wear resistance. In the current study, we have conducted the surface texture characterization of the coating on piston skirts and evaluated the impact of a novel Abradable Powder Coating (APC) on cylinder-kit performance in comparison to stock pistons. The surface texture and characteristic properties varying across the piston skirt are obtained and analyzed via a 3D optical profiler and OmniSurf3D software. The engine operating conditions are found through a combination of measurements, testing, and a calibrated GT-Power model. The variable surface properties along with other dimensions, thermodynamic attributes, flow characteristics and material properties are used to build a model in CASE (Cylinder-kit Analysis System for Engines)- PISTON for both an APC coated piston and a stock piston.
Technical Paper

The Influence of Impact Interface on Human Knee Injury: Implications for Instrument Panel Design and the Lower Extremity Injury Criterion

1997-11-12
973327
Injury to the lower extremity during an automotive crash is a significant problem. While the introduction of safety features (i.e. seat belts, air bags) has significantly reduced fatalities, lower extremity injury now occurs more frequently, probably for a variety of reasons. Lower extremity trauma is currently based on a bone fracture criterion derived from human cadaver impact experiments. These impact experiments, conducted in the 1960's and 70's, typically used a rigid impact interface to deliver a blunt insult to the 90° flexed knee. The resulting criterion states that 10 kN is the maximum load allowed at the knee during an automotive crash when certifying new automobiles using anthropomorphic dummies. However, clinical studies suggest that subfracture loading can cause osteochondral microdamage which can progress to a chronic and debilitating joint disease.
Technical Paper

Towards a Theory of Human Intraspecific Variation for Ergonomics and Human Modeling

2007-06-12
2007-01-2461
Human intraspecific variation is a complex problem, but may be better understood by using computational models in tandem with knowledge about the genetic bases of phenotypic traits. These results can be used in a multitude of settings. To move closer to this goal, biologically-realistic mappings between genotype and phenotype are constructed using genetic algorithm and neural network-like models. These models allow for gene-gene and gene-environment interactions to be characterized in the resulting phenotype. Two types of model are introduced: a simple, two-layer model, and a more complex model. The final section will focus on trends of growth and development in relation to relationship to modeling anthropometric traits and other morphological phenomena.
Technical Paper

Patellofemoral Joint Fracture Load Prediction Using Physical and Pathological Parameters

1998-02-23
980358
Lower extremity (knee) injury prediction resulting from impact trauma is currently based on a bone fracture criterion derived from experiments on predominantly aged cadavers. Subsequent experimental and theoretical studies indicate that more aged, pathological specimens require higher, not lower, loads to initiate bone fracture. This suggests that a bone fracture criterion based solely on aged specimens may not be representative of the current driving population. In the current study, we sought to determine if cadaver age, physical size, sex, baseline joint pathology, or patellar geometry correlated with fracture load. An analysis was made of data from previous impact experiments conducted on fifteen isolated cadaver knees using a consistent impact protocol. The protocol consisted of sequentially increasing the impact energy with a rigid interface until gross fracture. Gross bone fractures occurred at loads of 6.9±2.0 kN (range 3.2 to 10.6 kN) using this protocol.
Technical Paper

Impact Dependent Properties of Advanced and Ultra High Strength Steels

2007-04-16
2007-01-0342
The automotive industry is pursuing significant cost competitive efforts to reduce vehicle weight while maintaining or improving durability and impact performance. One such effort for the body shell structure is the utilization of advanced and ultra high strength steels (AHSS and UHSS) using the existing automotive manufacturing infrastructure. Common AHSS and UHSS steels include Dual Phase (DP), Transformation Induced Plasticity (TRIP), Partial Martensitic (PM) and others. The use of these multiphase high strength steels for impact dependent components has resulted in the need for further material characterization in order to better predict impact performance and guide new material development. This paper addresses the material properties and microstructural influences on impact behavior of advanced and ultra high strength steels through the use of laboratory tests and component level testing.
Technical Paper

Robust Compressor Model for AC System Simulation

2007-04-16
2007-01-0596
Simple component models are advantageous when simulating vehicle AC systems so that overall model complexity and computation time can be minimized. These models must be robust enough to avoid instability in the iteration method used for determining the AC system operating or “balance” point. Simplicity and stability are especially important when the AC system model is coupled with a vehicle interior model for studies of transient performance because these are more computationally intensive. This paper presents a semi-empirical modeling method for compressors based on dimensionless parameters. Application to some sample compressor data is illustrated. The model equations are simple to employ and will not introduce significant stability problems when used as part of a system simulation.
X