Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Impact of Fuel Properties on the Performances and Knock Behaviour of a Downsized Turbocharged DI SI Engine - Focus on Octane Numbers and Latent Heat of Vaporization

2009-04-20
2009-01-0324
Facing the CO2 emission reduction challenge, the combination of downsizing and turbocharging appears as one of the most promising solution for the development of high efficiency gasoline engines. In this context, as knock resistance is a major issue, limiting the performances of turbocharged downsized gasoline engines, fuel properties are more than ever key parameters to achieve high performances and low fuel consumption's levels. This paper presents a combustion study carried out into the GSM consortium of fuel quality effects on the performances of a downsized turbocharged Direct Injection SI engine. The formulation of two adapted fuel matrix has allowed to separate and evaluate the impacts of three major fuel properties: Research Octane Number (RON), Motor Octane Number (MON) and Latent Heat of Vaporization (LHV). Engine tests were performed on a single cylinder engine at steady state operating condition.
Technical Paper

Ethanol as a Diesel Base Fuel: Managing the Flash Point Issue - Consequences on Engine Behavior

2009-06-15
2009-01-1807
Facing more and more stringent regulations, new solutions are developed to decrease pollutant emissions. One of them have shown promising and relevant results. It consists of the use of ethanol as a blending component for diesel fuel Nevertheless, the addition of ethanol to Diesel fuel affects some key properties such as the flash point. Consequently, Diesel blends containing ethanol become highly flammable at a temperature around ambient temperature. This study proposes to improve the formulation of ethanol based diesel fuel in order to avoid flash point drawbacks. First, a focus on physical and chemical properties is done for ethanol based diesel fuels with and without flash point improvement. Second, blends are tested on a passenger car diesel engine, under a wide operating range conditions from low load low speed up to maximum power. The main advantage of the ethanol based fuels generate low smoke level, that allows using higher EGR rate, thus leading to an important NOx decrease.
Technical Paper

Which Fuel Properties for Improved CAI Combustion? Study of Fuel Impacts on the Operating Range of a CAI PFI Engine

2009-04-20
2009-01-1100
This paper presents the major results of an International Consortium study carried out by IFP and focused on the evaluation of fuel impacts on Controlled Auto Ignition (CAI) combustion. The formulation and tests of two adapted fuel matrix have allowed identifying and evaluating the main fuel properties that can improve CAI combustion for a maximum enlargement of the CAI operating range. CAI combustion mode appears as one promising solution for the development of low CO2 gasoline engines. Fuel properties can then be key parameters to improve the performances of CAI engines. During a first step of the study, steady state tests have been performed on a single cylinder Port Fuel Injection Spark Ignition (PFI SI) engine, with real fuels.
Technical Paper

Ethanol as a Diesel Base Fuel - Potential in HCCI Mode

2008-10-06
2008-01-2506
This work studies the potential of ethanol-Biodiesel-Diesel fuel blends in both conventional Diesel and HCCI combustion modes. First, ethanol based fuels were tested on a modern commercial multi-cylinder DI diesel engine. The aim of this phase was to assess how such fuels affect Diesel engine performances and emissions. These results indicate that low levels of PM and NOx emissions, with a contained fuel consumption penalty and with an acceptable noise level, are achievable when the Diesel-ethanol blends are used in combination with an optimized combustion control. Moreover, experiments with ethanol based blends were performed using a single cylinder engine, running under both early injection HCCI and Diesel combustion modes. Compared to a conventional fuel, these blends allow increasing the HCCI operating range and also lead to higher maximum power output in conventional Diesel combustion.
X