Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

1-g Suit Port Concept Evaluator 2008 Test Results

2009-07-12
2009-01-2572
The Lunar Electric Rover (LER), which was formerly called the Small Pressurized Rover (SPR), is currently being carried as an integral part of the lunar surface architectures that are under consideration in the Constellation Program. One element of the LER is the suit port, which is the means by which crew members perform Extravehicular Activities (EVAs). Two suit port deliverables were produced in fiscal year 2008: a 1-g suit port concept evaluator for functional integrated testing with the LER 1-g concept vehicle and a functional and pressurizable Engineering Unit (EU). This paper focuses on the 1-g suit port concept evaluator test results from the Desert Research and Technology Studies (D-RATS) October 2008 testing at Black Point Lava Flow (BPLF), Arizona. The 1-g suit port concept evaluator was integrated with the 1-g LER cabin and chassis concepts.
Journal Article

Investigating Control of Vision Based Autonomous Navigation in the Image Plane

2010-10-05
2010-01-2005
This paper develops a novel integrated navigational system for autonomous vehicle motion control. Vehicle control is defined in terms of the required vehicle steering angle, rate of steering change and speed. This paper proposes predictive control in the image plane. The proposed predictive control enables the navigation on the desired path, reduces the control complexity and increases the application space for multiple types of vehicles. The paper investigates vehicle control stability; especially in scenarios containing varying curvature turns and variable vehicle speeds. The primary emphasis of this paper is on vehicle control rather than scene analysis. To demonstrate the proposed vehicle control, a computer vision based multi-lane detection algorithm is introduced. The control strategy is applied such that the vehicle maintains position within the lane boundaries. Stability of the control algorithm is tested and demonstrated in multiple scenarios using 3-D simulation results.
Technical Paper

Intelligent Auxiliary Battery Control - A Connected Approach

2021-09-21
2021-01-1248
As vehicles are getting electrified and more intelligent, the energy consumption of the auxiliary system increases rapidly. The auxiliary battery acts as the backbone of the system to support the proper operation of the vehicle. It is important to ensure the auxiliary battery has enough energy to meet the basic loads regardless the vehicle is in park or running. However, the existing methods only focus on auxiliary energy management when the vehicle is in a dynamic event. To fulfill the gap, we propose an intelligent strategy that detects the low state of charge (SOC) condition, temporarily turns down the auxiliary loads based on their priorities and charges the auxiliary battery at the maximum efficiency of the auxiliary power unit. In addition, the proposed strategy allows the vehicle to get the park duration update and make intelligent decisions on charging the auxiliary battery.
Technical Paper

Engine-in-the-Loop Study of a Hierarchical Predictive Online Controller for Connected and Automated Heavy-Duty Vehicles

2020-04-14
2020-01-0592
This paper presents a cohesive set of engine-in-the-loop (EIL) studies examining the use of hierarchical model-predictive control for fuel consumption minimization in a class-8 heavy-duty truck intended to be equipped with Level-1 connectivity/automation. This work is motivated by the potential of connected/automated vehicle technologies to reduce fuel consumption in both urban/suburban and highway scenarios. The authors begin by presenting a hierarchical model-predictive control scheme that optimizes multiple chassis and powertrain functionalities for fuel consumption. These functionalities include: vehicle routing, arrival/departure at signalized intersections, speed trajectory optimization, platooning, predictive optimal gear shifting, and engine demand torque shaping. The primary optimization goal is to minimize fuel consumption, but the hierarchical controller explicitly accounts for other key objectives/constraints, including operator comfort and safe inter-vehicle spacing.
Technical Paper

Onboard Cybersecurity Diagnostic System for Connected Vehicles

2021-09-21
2021-01-1249
Today’s advanced vehicles have high degree of interaction due to numerous sensors, actuators and also with complex communication within the control units. In order to hack a vehicle, it has to be within a certain range of communication. Here, we discuss the On-Board Diagnostic (OBD) regulations for next generation BEV/HEV, its vulnerabilities and cybersecurity threats that come with hacking. We propose three cybersecurity attack detection and defense methods: Cyber-Attack detection algorithm, Time-Based CAN Intrusion Detection Method and, Feistel Cipher Block Method. These control methods autonomously diagnose a cybersecurity problem in a vehicle’s onboard system using an OBD interface, such as OBD-II when a fault caused by a cyberattack is detected, All of this is achieved in an internal communication network structure. The results discussed here focus on the first detection method that is Cyber-Attack detection algorithm.
Technical Paper

Mark III Space Suit Mobility: A Reach Evaluation Case Study

2007-06-12
2007-01-2473
A preliminary assessment of the reach envelope and field of vision (FOV) for a subject wearing a Mark III space suit was requested for use in human-machine interface design of the Science Crew Operations and Utility Testbed (SCOUT) vehicle. The reach and view of two suited and unsuited subjects were evaluated while seated in the vehicle using 3-dimensional position data collected during a series of reaching motions. Data was interpolated and displayed in orthogonal views and cross-sections. Compared with unsuited conditions, medio-lateral reach was not strongly affected by the Mark III suit, whereas vertical and antero-posterior reach were inhibited by the suit. Lateral FOV was reduced by approximately 40° in the suit. The techniques used in this case study may prove useful in human-machine interface design by providing a new means of developing and displaying reach envelopes.
Technical Paper

Guidance for Trade Studies of Flight-Equivalent Hardware

2007-07-09
2007-01-3223
Spacecraft hardware trade studies compare options primarily on mass while considering impacts to cost, risk, and schedule. Historically, other factors have been considered in these studies, such as reliability, technology readiness level (TRL), volume and crew time. In most cases, past trades compared two or more technologies across functional and TRL boundaries, which is an uneven comparison of the technologies. For example, low TRL technologies with low mass were traded directly against flight-proven hardware without consideration for requirements and the derived architecture. To provide for even comparisons of spacecraft hardware, trades need to consider functionality, mission constraints, integer vs. real number of flight hardware units, and mass growth allowances by TRL.
Technical Paper

Virtual Human Modeling for Manufacturing and Maintenance

1998-04-28
981311
Deneb's Interactive Graphic Robot Instruction Progam (IGRIP) and Envision software packages with the Ergonomic analysis option enabled were used for manufacturing process analysis and maintainability / human factors design evaluation in the Lockheed Martin Tactical Aircraft Systems - Fort Worth facility. The initial objective of both the manufacturing and maintainability engineering community was to validate the use of ergonomic modeling and simulation tools in an effort to gain acceptance of this new technology. Each discipline selected an existing operation to baseline the validation. Manufacturing selected the F-16 vertical fin as it is assembled from detail parts into a complete assembly, ready to be mated to the aircraft. Maintainability selected the removal of the Expanded Data Entry Electronics Unit (EXDEEU) located behind the ejection seat of the F-16 aircraft.
Technical Paper

A Combined Model for High Speed Valve Train Dynamics (Partly Linear and Partly Nonlinear)

1990-09-01
901726
A numerical modeling technique is proposed for computer simulations of high speed valve train dynamics. The dynamic terms in the valve spring reaction forces are calculated using linear vibration theory for given kinematic valve motions. Because the spring dynamics are analyzed before the time stepping integration, spring surge phenomena can be included without using additional computer time. Consequently, valve train dynamics can be simulated very quickly without noticeable errors in accuracy. The experimental results prove the computer model developed here is accurate and also computationally efficient.
Technical Paper

Performance of the Water Recovery System During Phase II of the Lunar-Mars Life Support Test Project

1997-07-01
972417
The recovery of potable water from waste water produced by humans in regenerative life support systems is essential for success of long-duration space missions. The Lunar-Mars Life Support Test Project (LMLSTP) Phase II test was performed to validate candidate technologies to support these missions. The test was conducted in the Crew and Thermal Systems Division (CTSD) Life Support Systems Integration Facility (LSSIF) at Johnson Space Center (JSC). Discussed in this paper are the water recovery system (WRS) results of this test. A crew of 4-persons participated in the test and lived in the LSSIF chamber for a duration of 30-days from June 12 to July 12, 1996. The crew had accommodations for personal hygiene, the air was regenerated for reuse, and the waste water was processed to potable and hygiene quality for reuse by the crew during this period. The waste water consisted of shower, laundry, handwash, urine and humidity condensate.
Technical Paper

Advanced Technology Spacesuit Ejector Testing and Analysis

1998-07-13
981670
An experimental study has been made of compressible jet mixing in an axisymmetric ejector of converging-diverging geometry. Three different jet sizes, 0.01, 0.0235, and 0.045 in. diameter were tested with three different mixer sizes, 0.25, 0.286, and 0.36 in. diameter. Jet and mixer combination were tested along with varying jet to mixer distances. The jet pressure varied from 20 to 200 psig, jet mass varied from 0.3 lbm/hr to 10 lbm/hr., and jet temperature varied from 21 to 24 deg. F. The secondary loop pressure varied from 3.7 to 25 psia, secondary mass flow varied from 1 to 70 lbm/hr, secondary loop pressure drop varied from 4 inH20 to 10 inH20, and secondary loop temperature varied same as jet temperature. The mass flow ratio was in the range of 2 to 14. The results were analyzed and compared with the Hickman and Nuckols and Sexton prediction models. The loss factor in Nuckols and Sexton model was adjusted to match the test results.
Technical Paper

Ejector Design for the Advanced Technology Spacesuit

1998-07-13
981669
In this investigation, analytical models were developed to predict the performance characteristics of axisymmetric single jet ejector. The ejector is divided into four parts, jet, mixer, nozzle, and diffuser. Basic flow equations were combined to calculate end to end flow characteristics for each of the four ejector components. Different jets and mixer combination were tested using three jet and three mixers. Characteristics curves have been drawn to predict flow characteristics of the ejector. Different configuration of jet and mixer incorporated different loss coefficient. Hence to get correct flow characteristics of the ejector right loss coefficient should be used.
Technical Paper

Spray and Combustion Visualization in an Optical HSDI Diesel Engine Operated in Low-Temperature Combustion Mode with Bio-diesel and Diesel Fuels

2008-04-14
2008-01-1390
An optically accessible single-cylinder high-speed direct-injection (HSDI) Diesel engine equipped with a Bosch common rail injection system was used to study the spray and combustion processes for European low sulfur diesel, bio-diesel, and their blends at different blending ratio. Influences of injection timing and fuel type on liquid fuel evolution and combustion characteristics were investigated under similar loads. The in-cylinder pressure was measured and the heat release rate was calculated. High-speed Mie-scattering technique was employed to visualize the liquid distribution and evolution. High-speed combustion video was also captured for all the studied cases using the same frame rate. NOx emissions were measured in the exhaust pipe. The experimental results indicated that for all of the conditions the heat release rate was dominated by a premixed combustion pattern and the heat release rate peak became smaller with injection timing retardation for all test fuels.
Technical Paper

Evaluation of Commercial Off-the-Shelf Ammonia Sorbents and Carbon Monoxide Oxidation Catalysts

2008-06-29
2008-01-2097
Designers of future space vehicles envision simplifying the Atmosphere Revitalization (AR) system by combining the functions of trace contaminant (TC) control and carbon dioxide removal into one swing-bed system. Flow rates and bed sizes of the TC and CO2 systems have historically been very different. There is uncertainty about the ability of trace contaminant sorbents to adsorb adequately in a high-flow or short bed length configurations, and to desorb adequately during short vacuum exposures. This paper describes preliminary results of a comparative experimental investigation into adsorbents for trace contaminant control. Ammonia sorbents and low temperature catalysts for CO oxidation are the foci. The data will be useful to designers of AR systems for Constellation. Plans for extended and repeated vacuum exposure of ammonia sorbents are also presented.
Technical Paper

Project Orion, Environmental Control and Life Support System Integrated Studies

2008-06-29
2008-01-2086
Orion is the next vehicle for human space travel. Humans will be sustained in space by the Orion subystem, environmental control and life support (ECLS). The ECLS concept at the subsystem level is outlined by function and technology. In the past two years, the interface definition with other subsystems has increased through different integrated studies. The paper presents the key requirements and discusses three recent studies (e.g., unpressurized cargo) along with the respective impacts on the ECLS design moving forward.
Technical Paper

Dynamic Thermal Management System Modeling of a More Electric Aircraft

2008-11-11
2008-01-2886
Advancements in electrical, mechanical, and structural design onboard modern more electric aircraft have added significant stress to the thermal management systems (TMS). A thermal management system level analysis tool has been created in MATLAB/Simulink to facilitate rapid system analysis and optimization to meet the growing demands of modern aircraft. It is anticipated that the tracking of thermal energy through numerical integration will lead to more accurate predictions of worst case TMS sizing conditions. In addition, the non-proprietary nature of the tool affords users the ability to modify component models and integrate advanced conceptual designs that can be evaluated over multiple missions to determine the impact at a system level.
Technical Paper

Online Project Information System (OPIS) Description, Annual Reporting Outcomes, and Resulting Improvements

2009-07-12
2009-01-2513
The On-line Project Information System (OPIS) is the Exploration Life Support (ELS) mechanism for task data sharing and annual reporting. Fiscal year 2008 (FY08) was the first year in which ELS Principal Investigators (PI's) were required to complete an OPIS annual report. The reporting process consists of downloading a template that is customized to the task deliverable type(s), completing the report, and uploading the document to OPIS for review and approval. In addition to providing a general status and overview of OPIS features, this paper describes the user critiques and resulting system modifications of the first year of OPIS reporting efforts. Specifically, this paper discusses process communication and logistics issues, user interface ambiguity, report completion challenges, and the resultant or pending system improvements designed to circumvent such issues for the fiscal year 2009 reporting effort.
Technical Paper

Predicting Fatigue for Isolated Joints While Wearing an Extra-vehicular Mobility Unit (EMU)

2001-06-26
2001-01-2099
To work outside a space craft, humans must wear a protective suit. The required suit pressurization creates additional resistance for the wearer while performing work. How much does the suit effect work and fatigue? To answer these questions, dynamic torque was collected for the shoulder, elbow and wrist for six subjects in an Extra-vehicular Mobility Unit (EMU). In order to quantify fatigue, the subjects were to exert maximum voluntary torque for five minutes or until their maximum fell below 50% of their initial maximum for three consecutive repetitions. Using the collected torque and time data, logarithmic based functions were derived to estimate torque decay to within an absolute error of 20%. These results will be used in the development of a generalized tool for prediction of maximum available torque over time for humans using the current EMU.
Technical Paper

Biosafe Dress Rehearsal for Mars Sample Containment Using In-Space Sterilization

2003-07-07
2003-01-2674
Total sample containment is an absolute requirement for Mars sample return missions, derived from the requirement to protect against uncontrolled introduction of potentially hazardous foreign material into the earth's biosphere. These constraints of planetary protection comprise one of the major remaining hurdles to low cost implementation of sample return missions. It is suggested here that to spread the costs of the program, the first mission should consider sterilizing the samples and canister surfaces while still in space during the return to Earth.
Technical Paper

Dynamic Model of the BIO-Plex Air Revitalization System

2001-07-09
2001-01-2318
The BIO-Plex facility will need to support a variety of life support system designs and operational strategies. These systems will be tested and evaluated in the BIO-Plex facility. An important goal of the life support program is to identify designs that best meet all size and performance constraints for a variety of possible future missions. Integrated human testing is a necessary step in reaching this goal. System modeling and analysis will also play an important role in this endeavor. Currently, simulation studies are being used to estimate air revitalization buffer and storage requirements in order to develop infrastructure requirements of the BIO-Plex facility. Simulation studies are also being used to verify that the envisioned operation strategy will be able to meet all performance criteria. In this paper, a simulation study is presented for a nominal BIO-Plex scenario with a high-level of crop growth.
X