Refine Your Search

Topic

Search Results

Journal Article

High Efficiency, Low Emissions RCCI Combustion by Use of a Fuel Additive

2010-10-25
2010-01-2167
Heavy-duty engine experiments were conducted to explore reactivity controlled compression ignition (RCCI) combustion through addition of the cetane improver di-tert-butyl peroxide (DTBP) to pump gasoline. Unlike previous diesel/gasoline dual-fuel operation of RCCI combustion, the present study investigates the feasibility of using a single fuel stock (gasoline) as the basis for both high reactivity and low reactivity fuels. The strategy consisted of port fuel injection of gasoline and direct injection of the same gasoline doped with a small volume percent addition of DTBP. With 1.75% DTBP by volume added to only the direct-injected fuel (which accounts for approximately 0.2% of the total fueling) it was found that the additized gasoline behaved similarly to diesel fuel, allowing for efficient RCCI combustion. The single fuel results with DTBP were compared to previous high-thermal efficiency, low-emissions results with port injection of gasoline and direct injections of diesel.
Journal Article

Construction and Use of Surrogate Models for the Dynamic Analysis of Multibody Systems

2010-04-12
2010-01-0032
This study outlines an approach for speeding up the simulation of the dynamic response of vehicle models that include hysteretic nonlinear tire components. The method proposed replaces the hysteretic nonlinear tire model with a surrogate model that emulates the dynamic response of the actual tire. The approach is demonstrated via a dynamic simulation of a quarter vehicle model. In the proposed methodology, training information generated with a reduced number of harmonic excitations is used to construct the tire hysteretic force emulator using a Neural Network (NN) element. The proposed approach has two stages: a learning stage, followed by an embedding of the learned model into the quarter car model. The learning related main challenge stems from the attempt to capture with the NN element the behavior of a hysteretic element whose response depends on its loading history.
Journal Article

Effects of Biofuel Blends on RCCI Combustion in a Light-Duty, Multi-Cylinder Diesel Engine

2013-04-08
2013-01-1653
Reactivity Controlled Compression Ignition (RCCI) is an engine combustion strategy that utilizes in-cylinder fuel blending to produce low NOx and PM emissions while maintaining high thermal efficiency. Previous RCCI research has been investigated in single-cylinder heavy-duty engines [1, 2, 3, 4, 5, 6]. The current study investigates RCCI operation in a light-duty multi-cylinder engine over a wide number of operating points representing vehicle operation over the US EPA FTP test. Similarly, previous RCCI engine experiments have used petroleum based fuels such as ultra-low sulfur diesel fuel (ULSD) and gasoline, with some work done using high percentages of biofuels, namely E85 [7]. The current study was conducted to examine RCCI performance with moderate biofuel blends, such as E20 and B20, as compared to conventional gasoline and ULSD.
Journal Article

Experimental Investigation of the Impact of In-Cylinder Pressure Oscillations on Piston Heat Transfer

2016-10-03
2016-01-9044
An experimental investigation was conducted to explore the impact in-cylinder pressure oscillations have on piston heat transfer. Two fast-response surface thermocouples embedded in the piston top measured transient temperature and a commercial wireless telemetry system was used to transmit thermocouple signals from the moving piston. Measurements were made in a light-duty single-cylinder research engine operated under low temperature combustion regimes including Homogeneous Charge Compression Ignition (HCCI) and Reactivity Controlled Compression Ignition (RCCI) and Conventional Diesel (CDC). The HCCI data showed a correlated trend of higher heat transfer with increased pressure oscillation strength, while the RCCI and CDC data did not. An extensive HCCI data set was acquired. The heat transfer rate - when corrected for differences in cylinder pressure and gas temperature - was found to positively correlate with increased pressure oscillations.
Journal Article

An Expeditious High Fidelity ABAQUS-Based Surrogate Tire Model for Full Vehicle Durability Analysis in ADAMS

2011-04-12
2011-01-0187
This paper discusses an approach to construct a high fidelity surrogate tire model using a two-phase optimization-based algorithm that draws on data generated by off-line nonlinear ABAQUS tire simulations. It subsequently describes the process of Simulink-based interfacing of the resulting surrogate model to a full ADAMS vehicle model to enable accurate and expeditious durability studies. The two-phase surrogate model construction relies on an identification method that draws on the Instantaneous Center Manifold (ICM) theory. In the proposed method, a generally forced non-autonomous nonlinear structural system is represented as a sequence of harmonically excited autonomous nonlinear systems. The close-form solution of each of these systems is produced using the ICM theory. The first phase of the surrogate model construction uses an optimal Orthogonal Matching Pursuit (OMP) algorithm to unify all ICMs used to approximate the reaction force of the tire at its spindle.
Journal Article

Micro-scale Study of DPF Permeability as a Function of PM Loading

2011-04-12
2011-01-0815
An investigation of the permeability evolution of a diesel particulate filter channel wall as a function of soot loading was conducted. This investigation examined the effects of varying particle characteristics and two filtration velocities (4 and 8 cm/s) on the wall permeability throughout a 1 g/L soot loading. This study was possible using the Diesel Exhaust Filtration Analysis (DEFA) system that was modified to perform temperature controlled in-situ flow tests. The DEFA system allows for isolation of the pressure drop due to the filter wall and soot cake layer greatly simplifying the permeability calculation. Permeability evolution fundamentals and the effects of loading conditions were studied by filling 18 filters with the DEFA system. The filters were loaded using one of four operating conditions of a single-cylinder heavy-duty diesel engine. These operating conditions were comprehensively characterized giving insight into the effects of varying particle characteristics.
Journal Article

Replicating Instantaneous Cylinder Mass Flow Rate with Parallel Continuously and Discretely Actuating Intake Plenum Valves

2012-04-16
2012-01-0417
The focus of this paper is to discuss the modeling and control of intake plenum pressure on the Powertrain Control Research Laboratory's (PCRL) Single-Cylinder Engine (SCE) transient test system using a patented device known as the Intake Air Simulator (IAS), which dynamically controls the intake plenum pressure, and, subsequently, the instantaneous airflow into the cylinder. The IAS exists as just one of many devices that the PCRL uses to control the dynamic boundary conditions of its SCE transient test system to make it “think” and operate as though it were part of a Multi-Cylinder Engine (MCE) test system. The model described in this paper will be used to design a second generation of this device that utilizes both continuously and discretely actuating valves working in parallel.
Journal Article

Investigation of Fuel Reactivity Stratification for Controlling PCI Heat-Release Rates Using High-Speed Chemiluminescence Imaging and Fuel Tracer Fluorescence

2012-04-16
2012-01-0375
Premixed charge compression ignition (PCI) strategies offer the potential for simultaneously low NOx and soot emissions with diesel-like efficiency. However, these strategies are generally confined to low loads due to inadequate control of combustion phasing and heat-release rate. One PCI strategy, dual-fuel reactivity-controlled compression ignition (RCCI), has been developed to control combustion phasing and rate of heat release. The RCCI concept uses in-cylinder blending of two fuels with different auto-ignition characteristics to achieve controlled high-efficiency clean combustion. This study explores fuel reactivity stratification as a method to control the rate of heat release for PCI combustion. To introduce fuel reactivity stratification, the research engine is equipped with two fuel systems. A low-pressure (100 bar) gasoline direct injector (GDI) delivers iso-octane, and a higher-pressure (600 bar) common-rail diesel direct-injector delivers n-heptane.
Journal Article

Numerical Simulation of Hollow-Cone Sprays Interacting with Uniform Crossflow for Gasoline Direct Injection Engines

2011-09-11
2011-24-0007
The interaction of fuel sprays with in-cylinder air flow is crucially important for the mixture preparation and subsequent combustion processes in gasoline direct injection (GDI) engines. In the present work, the experimentally validated computational fluid dynamics (CFD) simulations are performed to study the dynamics and physical insight of hollow-cone sprays interacting with a uniform crossflow. The basis of the model is the standard Reynolds-averaged Navier-Stokes (RANS) approach coupled to the Lagrangian treatment for statistical groups (parcels) representing the physical droplet population. The most physically suitable hybrid breakup models depicting the liquid sheet atomization and droplet breakup processes based on the linear instability analysis and Taylor analogy theory (LISA-TAB) are used. Detailed comparisons are made between the experiments and computations in terms of spray structure, local droplet diameter and velocity distributions.
Journal Article

Comparison of Compression Ignition Engine Noise Metrics in Low-Temperature Combustion Regimes

2013-04-08
2013-01-1659
Many combustion researchers use peak pressure rise rate or ringing intensity to indicate combustion noise in lieu of microphone data or using a combustion noise meter that simulates the attenuation characteristics of the engine structure. In this paper, peak pressure rise rate and ringing intensity are compared to combustion noise using a fully documented algorithm similar to the ones used by combustion noise meters. Data from multiple engines operating under several low-temperature combustion strategies were analyzed. The results suggest that neither peak pressure rise rate nor ringing intensity provides a direct correlation to engine noise over a wide range of operating conditions. Moreover, the estimation of both metrics is often accompanied by the filtering of the pressure data, which changes the absolute value of the results.
Journal Article

Knock Tendency Prediction in a High Performance Engine Using LES and Tabulated Chemistry

2013-04-08
2013-01-1082
The paper reports the application of a look-up table approach within a LES combustion modelling framework for the prediction of knock limit in a highly downsized turbocharged DISI engine. During experimental investigations at the engine test bed, high cycle-to-cycle variability was detected even for relatively stable peak power / full load operations of the engine, where knock onset severely limited the overall engine performance. In order to overcome the excessive computational cost of a direct chemical solution within a LES framework, the use of look-up tables for auto-ignition modelling perfectly fits with the strict mesh requirements of a LES simulation, with an acceptable approximation of the actual chemical kinetics. The model here presented is a totally stand-alone tool for autoignition analysis integrated with look-up table reading from detailed chemical kinetic schemes for gasoline.
Technical Paper

In-Cylinder Fuel Blending of Gasoline/Diesel for Improved Efficiency and Lowest Possible Emissions on a Multi-Cylinder Light-Duty Diesel Engine

2010-10-25
2010-01-2206
In-cylinder fuel blending of gasoline with diesel fuel is investigated on a multi-cylinder light-duty diesel engine as a strategy to control in-cylinder fuel reactivity for improved efficiency and lowest possible emissions. This approach was developed and demonstrated at the University of Wisconsin through modeling and single-cylinder engine experiments. The objective of this study is to better understand the potential and challenges of this method on a multi-cylinder engine. More specifically, the effect of cylinder-to-cylinder imbalances and in-cylinder charge motion as well as the potential limitations imposed by real-world turbo-machinery were investigated on a 1.9-liter four-cylinder engine. This investigation focused on one engine condition, 2300 rpm, 5.5 bar net mean effective pressure (NMEP). Gasoline was introduced with a port-fuel-injection system.
Technical Paper

CFD Study of HCPC Turbocharged Engine

2010-10-25
2010-01-2107
Homogeneous-charge, compression-ignition (HCCI) combustion is triggered by spontaneous ignition in dilute homogeneous mixtures. The combustion rate must be reduced by suitable solutions such as high rates of Exhaust Gas Recirculation (EGR) and/or lean mixtures. HCCI is considered a very effective way to reduce engine pollutant emissions, however only a few HCCI engines have entered into production. HCCI combustion currently cannot be extended to the whole engine operating range, especially to high loads, since the use of EGR displaces air from the cylinder, limiting engine mean effective pressure, thus the engine must be able to operate also in conventional mode. This paper concerns an innovative concept to control HCCI combustion in diesel-fuelled engines. This new combustion concept is called Homogenous Charge Progressive Combustion (HCPC). HCPC is based on split-cycle principle.
Technical Paper

Numerical Simulation of Diesel Sprays Using an Eulerian-Lagrangian Spray and Atomization (ELSA) Model Coupled with Nozzle Flow

2011-04-12
2011-01-0386
High-pressure diesel sprays were simulated with an Eulerian-Lagrangian Spray and Atomization (ELSA) model, based on a multidimensional engine computational fluid dynamics (CFD) code KIVA-3V. The atomization of the dense liquid core in the near-nozzle region was modeled with turbulent mixing of the diesel fuel with the ambient gas. Under the continuum assumption of a fuel-air mixture in this region, two transport equations were solved for the liquid mass fraction and liquid surface area density. At a certain downstream location where the spray became dilute, a switch from the Eulerian to the Lagrangian approach was made to benefit from the advantages of the conventional Lagrangian droplet models, such as droplet collision and turbulent dispersion modeling. The droplet size and velocity to be initialized at this switch were determined by the local CFD cell properties.
Technical Paper

Clutchless Shifting of an Automated Manual Transmission in a Hybrid Powertrain

2011-09-13
2011-01-2194
The normal approach to shifting a manual transmission in a vehicle includes a clutch which connects the engine to the transmission. When shifting, the relative speed of the engine and wheels changes. The transmission is disconnected from the engine with the clutch and the gears in the transmission are pressed together until they engage. There are small friction synchronizers inside the transmission, but these are only designed for the inertia of the gears and the clutch pressure plate. The clutch is required to synchronize the transmission speed with the engine speed after a shift, and to remove the load from the transmission before a shift. Described is a method for automating a manual transmission hybrid-electric powertrain which doesn't require a clutch. A hybrid drivetrain including an electric motor and a combustion engine has the benefit of much better speed and torque control than a combustion engine alone.
Technical Paper

A Simple Model of Cyclic Variation

2012-10-23
2012-32-0003
A simple model to simulate cycle-by-cycle variation that is suitable for use in Monte-Carlo approaches has been developed and validated with a wide range of experimental data. The model is intended to be diagnostic rather than predictive in nature, with a goal of providing realistic in-cylinder pressures. The individual-cycle cumulative rate of heat release was curve fit with a four-parameter Wiebe function. It was found that the distribution of the Wiebe b-parameter was quite small, so its value was obtained from the ensemble-averaged condition. The remaining three Wiebe function parameters, θig, θcomb and m were found to be distributed over a moderate range, and were linearly correlated to each other. Using the cumulative density function of θig, and the linear fit of θcomb and m to θig, with a random component added, a Monte-Carlo scheme was developed.
Technical Paper

Effects of Turbulence on Mixture Stratification in a Small-Bore Utility Engine

2012-10-23
2012-32-0005
The current work investigates the in-cylinder mixing of a fluorescent tracer species inducted into the engine through a small-diameter tube mounted along the inner port wall and the remaining inlet stream in a small-bore utility engine. Planar laser-induced fluorescence (PLIF) measurements were acquired on a single plane, parallel to and approximately 4 mm below the cylinder head deck, throughout the intake and compression strokes. The data were analyzed to qualitatively and quantitatively describe the evolution of the mixture stratification. The highest degree of stratification in the mean field was observed at a timing of 90 crank angle (CA) degrees after top dead center (aTDC) of the intake stroke, which corresponds closely to the point of maximum intake valve lift (105 CA degrees aTDC).
Technical Paper

Preliminary Results from a Simplified Approach to Modeling the Distribution of Engine Knock

2012-10-23
2012-32-0004
In this paper, three models for the prediction of knock onset timing are compared: an ignition-integral model using a simple ignition delay correlation, an ignition-integral model using a pre-computed lookup table of ignition delays, and the direct integration of a detailed chemical kinetic mechanism. All three models were found to compare well with experimentally measured results; the correlation-based knock-integral model was found to be as accurate as the other methods and was computationally far more efficient. The direct integration approach correlated very well with the experimental data but was delayed by 1-2 crank angles. The simplified models have been used in conjunction with a Monte-Carlo approach to assess the cycle-by-cycle variations in knock onset timing. A statistical comparison between the Monte-Carlo predictions and experimental results showed a good prediction of the distribution widths, and some modest phasing issues over a wide range of ignition timing.
Technical Paper

A Comparison of Engine Knock Metrics

2012-10-23
2012-32-0007
The objective of this work is to compare and contrast standard metrics that are used to quantify engine knock phenomena. Several methods found in the literature were investigated, and the fundamental bases for the methods were elucidated. A new knock onset metric was developed and compared to the commonly used threshold value exceeded metric. The standard knock intensity metrics were categorized based on the underlying signal (pressure, heat release), domain of analysis (time or frequency), and the calculation method (single-valued or integral). Each category was evaluated based on the fundamental advantages and disadvantages of that category. Single-value methods were found to be inadequate because they are prone to biases due to wave interference and beating. Heat release-based metrics were found to be redundant and be based on flawed assumptions.
Technical Paper

Investigation of Steady-State RCCI Operation in a Light-Duty Multi-Cylinder Engine Using “Dieseline”

2017-03-28
2017-01-0761
In an attempt to increase efficiency and lower critical and highly regulated emissions (i.e., NOx, PM and CO2) many advanced combustion strategies have been investigated. Most of the current strategies fall into the category of low temperature combustion (LTC), which allow emissions mandates to be met in-cylinder along with anticipated reduction in cost and complexity. These strategies, such as homogeneous charge compression ignition (HCCI), premixed charge compression ignition (PCCI), partially premixed combustion (PPC) and reactivity controlled compression ignition (RCCI), use early injection timings, resulting in a highly lean charge with increased specific heat ratios to improve thermal efficiency and reduce PM emissions. Lower combustion temperatures also avoid the activation of NOx formation reactions.
X