Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Real-Time Evaluation of IMEP and ROHR-related Parameters

2007-09-16
2007-24-0068
Combustion control is one of the key factors to obtain better performance and lower pollutants emissions, for diesel, spark ignition and HCCI engines. This paper describes a real-time indicating system based on commercially available hardware and software, which allows the real-time evaluation of Indicated Mean Effective Pressure (IMEP) and Rate of Heat Release (ROHR) related parameters, such as 50%MFB, cylinder by cylinder, cycle by cycle. This kind of information is crucial for engine mapping and can be very important also for rapid control prototyping purposes. The project objective is to create a system able to process in-cylinder pressure signals in the angular domain without the need for crankshaft encoder, for example using as angular reference the signal coming from a standard equipment sensor wheel. This feature can be useful both for test bench and on-board tests.
Technical Paper

Measurement Errors in Real-Time IMEP and ROHR Evaluation

2008-04-14
2008-01-0980
Combustion control is one of the key factors to obtain better performance and lower pollutants emissions, for diesel, spark ignition and HCCI engines. This paper describes a real-time indicating system based on commercially available hardware and software, which allows the real-time evaluation of Indicated Mean Effective Pressure (IMEP) and Rate of Heat Release (ROHR) related parameters, such as 50%MFB, cylinder by cylinder, cycle by cycle. This kind of information is crucial for engine mapping and can be very important also for rapid control prototyping purposes. The project objective is to create a system able to process in-cylinder pressure signals in the angular domain without the need for crankshaft encoder, for example using as angular reference the signal coming from a standard equipment sensor wheel. This feature can be useful both for test bench and on-board tests.
Technical Paper

Fast Prototyping of a Racing Diesel Engine Control System

2008-12-02
2008-01-2942
This paper shows how Rapid Control Prototyping (RCP) and Computational Fluid Dynamics (CFD) techniques have been applied to design and implement an engine control system for a common rail diesel engine. The project aim is to setup a high performance engine in order to participate to the Italian Tractor Pulling Championship (Prostock category). The original engine is a John Deere 6081 Tier2 model, already equipped with a common rail system. Engine performance is substantially determined by the control system, which is in charge of limiting engine speed, boost pressure and Air to Fuel Ratio (AFR). Given that typically the information and equipment needed to change control parameters are not accessible to customers, the first step of the project has been to replace the original control system, while maintaining injectors and pumps. This solution can guarantee the best performance, but it requires time to design the new control system, both in terms of hardware and software.
X