Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Biomechanical Characterization of the Constitutive Relationship for the Brainstem

1995-11-01
952716
Experimental tests using porcine brainstem samples were performed on a custom designed stress relaxation shear device. Tests were performed dynamically at strain rates >1 s−1, to three levels of peak strain (2.5%-7.5%). The directional dependence of the material properties was investigated by shearing both parallel and transverse to the predominant direction of the axonal fibers. Quasi-linear viscoelastic theory was used to describe the reduced relaxation response and the instantaneous elastic function. The time constants of the reduced relaxation function demonstrate no directional dependence; however, the relative magnitude of the exponential functions and the parameter representing the final limiting value are significantly different for each direction. The elastic function qualitatively demonstrates a dependence on direction. These results suggest that the brainstem is an anisotropic material.
Technical Paper

Biomechanics of Diffuse Brain Injuries

1985-01-01
856022
This report discusses the development of brain injury tolerance criteria based on the study of three model systems: the primate, inanimate physical surrogates, and isolated tissue elements. Although we are equally concerned with the neural and neurovascular tissue components of the brain, the report will focus on the former and, in particular, the axonal elements. Under conditions of distributed, impulsive, angularacceleration loading, the primate model exhibits a pathophysiological response ranging from mild cerebral concussion to massive, diffuse white matter damage with prolonged coma. When physical models are subjected to identical loading conditions it becomes possible to map the displacements and calculate the associated strains and stresses within the field simulating the brain. Correlating these experimental models leads to predictive levels of tissue element deformation that may be considered as a threshold for specific mechanisms of injury.
X