Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

A Normalization Technique for Developing Corridors from Individual Subject Responses

2004-03-08
2004-01-0288
This paper presents a technique for developing corridors from individual subject responses contained in experimental biomechanical data sets. Force-deflection response is used as an illustrative example. The technique begins with a method for averaging human subject force-deflection responses in which curve shape characteristics are maintained and discontinuities are avoided. Individual responses sharing a common characteristic shape are averaged based upon normalized deflection values. The normalized average response is then scaled to represent the given data set using the mean peak deflection value associated with the set of experimental data. Finally, a procedure for developing a corridor around the scaled normalized average response is presented using standard deviation calculations for both force and deflection.
Technical Paper

Rollover Testing of a Sport Utility Vehicle (SUV) with an Inertial Measurement Unit (IMU)

2015-04-14
2015-01-1475
A follow-up case study on rollover testing with a single full-size sport utility vehicle (SUV) was conducted under controlled real-world conditions. The purpose of this study was to conduct a well-documented rollover event that could be utilized in evaluating various methods and techniques over the phases associated with rollover accidents. The phases documented and discussed, inherent to rollovers, are: pre-trip, trip, and rolling phases. With recent advances in technology, new devices and techniques have been designed which improve the ability to capture and document the unpredictable dynamic events surrounding vehicle rollovers. One such device is an inertial measurement unit (IMU), which utilizes GPS technology along with integrated sensors to report and record measured dynamic parameters real-time. The data obtained from a RT-4003 IMU device are presented and compared along with previous test data and methodology.
Technical Paper

Correlation of Strain and Loads Measured in the Long Bones With Observed Kinematics of the Lower Limb During Vehicle-Pedestrian Impacts

2007-10-29
2007-22-0018
The purpose of this study is to determine the loads in the long bones of the lower extremities during vehicle pedestrian impact tests, and to correlate load data with observed kinematics in an effort to understand how stature and vehicle shape influence pedestrian response. In tests with a large sedan and a small multi-purpose vehicle (MPV), four postmortem human surrogates (PMHS) in mid-stance gait were struck laterally at 40 km/h. Prior to the tests, each PMHS was instrumented with four uniaxial strain gages around the mid-shaft cross section of the struck-side (right) tibia and the femora bilaterally. After the tests, the non-fractured bones were harvested and subjected to three-point bending experiments. The effective elastic moduli were determined by relating the applied bending loads with the measured strains using strain gage locations, detailed bone geometry, and elastic beam theory.
X