Refine Your Search

Topic

Search Results

Journal Article

Innovations In Experimental Techniques For The Development of Fuel Path Control In Diesel Engines

2010-04-12
2010-01-1132
The recent development of diesel engine fuel injection systems has been dominated by how to manage the degrees of freedom that common rail multi-pulse systems now offer. A number of production engines already use four injection events while in research, work based on up to eight injection events has been reported. It is the degrees of freedom that lead to a novel experimental requirements. There is a potentially complex experimental program needed to simply understand how injection parameters influence the combustion process in steady state. Combustion behavior is not a continuum and as both injection and EGR rates are adjusted, distinct combustion modes emerge. Conventional calibration processes are severely challenged in the face of large number of degrees of freedom and as a consequence new development approaches are needed.
Journal Article

Real-Time Optimal Energy Management of Heavy Duty Hybrid Electric Vehicles

2013-04-08
2013-01-1748
The performance of energy flow management strategies is essential for the success of hybrid electric vehicles (HEVs), which are considered amongst the most promising solutions for improving fuel economy as well as reducing exhaust emissions. The heavy duty HEVs engaged in cycles characterized by start-stop configuration has attracted widely interests, especially in off-road applications. In this paper, a fuzzy equivalent consumption minimization strategy (F-ECMS) is proposed as an intelligent real-time energy management solution for heavy duty HEVs. The online optimization problem is formulated as minimizing a cost function, in terms of weighted fuel power and electrical power. A fuzzy rule-based approach is applied on the weight tuning within the cost function, with respect to the variations of the battery state-of-charge (SOC) and elapsed time.
Journal Article

Design and Optimisation of the Propulsion Control Strategy for a Pneumatic Hybrid City Bus

2016-04-05
2016-01-1175
A control strategy has been designed for a city bus equipped with a pneumatic hybrid propulsion system. The control system design is based on the precise management of energy flows during both energy storage and regeneration. Energy recovered from the braking process is stored in the form of compressed air that is redeployed for engine start and to supplement the engine air supply during vehicle acceleration. Operation modes are changed dynamically and the energy distribution is controlled to realize three principal functions: Stop-Start, Boost and Regenerative Braking. A forward facing simulation model facilitates an analysis of the vehicle dynamic performance, engine transient response, fuel economy and energy usage.
Journal Article

Development of Model Predictive Controller for SOFC-IC Engine Hybrid System

2009-04-20
2009-01-0146
Fuel cell hybrid systems have emerged rapidly in efforts to reduce emissions. The success of these systems mainly depends on implementation of suitable control architectures. This paper presents a control system design for a novel fuel cell - IC Engine hybrid power system. Control oriented models of the system components are developed and integrated. Based on the simulation results of the system model, the control variables are identified. The main objective for the control design is to manage fuel, air and exhaust flows in a way to deliver the required load on the system within local constraints. The controller developed for regulating flows in the system is based on model predictive control theory. The performance of the overall control system is assessed through simulations on a nonlinear dynamic model.
Journal Article

Accurate and Continuous Fuel Flow Rate Measurement Prediction for Real Time Application

2011-04-12
2011-01-1303
One of the most critical challenges currently facing the diesel engine industry is how to improve fuel economy under emission regulations. Improvement in fuel economy can be achieved by precisely controlling Air/Fuel ratio and by monitoring fuel consumption in real time. Accurate and repeatable measurements of fuel rate play a critical role in successfully controlling air/fuel ratio and in monitoring fuel consumption. Volumetric and gravimetric measurements are well-known methods for measuring fuel consumption of internal combustion engines. However, these methods are not suitable for obtaining fuel flow rate data used in real-time control/measurement. In this paper, neural networks are used to solve the problem concerning discontinuous data of fuel flow rate measured by using an AVL 733 s fuel meter. The continuous parts of discontinuous fuel flow rate are used to train and validate a neural network, which can then be used to predict the discontinuous parts of the fuel flow rate.
Journal Article

Input and Structure Choices of Neural Networks on the Fuel Flow Rate Prediction in the Transient Operation Condition

2012-11-01
2011-01-2458
Measurement accuracy and repeatability for fuel rate is the key to successfully improve fuel economy of diesel engines as fuel economy could only be achieve by precisely controlling air/fuel ratio and monitor real-time fuel consumption. The volumetric and gravimetric measurement principles are well-known methods to measure the fuel consumption of internal combustion engines. However, the fuel flow rate measured by these methods is not suitable for either real-time control or real-time measurement purposes. The problem concerning discontinuous data of fuel flow rate measured by using an AVL 733s fuel meter was solved for the steady state scenario by using neural networks. It is easier to choose inputs of the neural networks for the steady state scenario because the inputs could be chosen as the particular inputs which excited the system in the application.
Technical Paper

The Controllability of Vapour Based Thermal Recovery Systems in Vehicles

2007-04-16
2007-01-0270
The idea of thermal energy recovery from vehicle engine exhaust flow is now well supported and funded. Through a number of research projects, several component technologies have been identified. Rankine cycle, turbo-compounding and thermo-electric systems have all attracted interest. Fuel economy improvements vary depending on the drive cycle and the capability of the underlying technologies, but have been reported as high as 25%. Our work at Sussex on a form of Rankine cycle has revealed generic issues about the control of thermal recovery and the associated modelling requirements. Typical issues include the balancing the rate of heat input to the recovery system with the loss of useful work from large temperature differences. The size of components dictates the control authority over the system and consequently its ability to follow changing conditions.
Technical Paper

Real-time Adaptive Predictive Control of the Diesel Engine Air-path Based on Fuzzy Parameters Estimation

2007-04-16
2007-01-0971
In this paper, a robust adaptive optimal tracking control design for the air-path system of diesel engines with uncertain parameters and external driver commands is proposed. First, an optimal controller based on the analytic solution of a performance index is derived. It achieves tracking of suitable references (corresponding to low emissions and fuel consumption) for both the air-fuel ratio and the fraction of the recirculated exhaust gas. Then, a fuzzy estimation algorithm is used to identify the plant parameters and consequently to adapt the controller online. The simulated diesel engine is a medium duty Caterpillar 3126B with six cylinders, equipped with a variable geometry turbocharger and an exhaust gas recirculation valve. The proposed controller design is based on the reduced third order mean value model and implemented as a closed-form nonlinear model predictive control law on the full order model.
Technical Paper

Can Infotronics Enable Competitiveness of Electric Drive Vehicles?

1998-10-19
98C055
The hybrid electric vehicle (HEV) is already available commercially and is demonstrating the very significant benefit of improved fuel consumption. The costs associated with the hybrid vehicle are still high, and for novel types of auxiliary power unit are still undefined. Measures to improve the performance of HEV technology are emerging and include the traffic and navigation information which forms part of the telematics infrastructure. One of the key issues in enhancing HEV performance is journey prediction. Journey time and energy requirements can be products of a telematics system but form the basis for a significant performance enhancement to an HEV.
Technical Paper

Modeling and Control of Diesel Engines Equipped with a Two-Stage Turbo-System

2008-04-14
2008-01-1018
The two-stage turbocharging technique is an effective way to improve performance and reduce emissions in diesel engines. In this paper, we consider a diesel engine equipped with an exhaust gas recirculation (EGR) valve and two turbochargers in series. The low pressure turbine is of fixed geometry and the high pressure turbine is a variable geometry turbine (VGT). The control objective is to regulate air-to-fuel (AFR), EGR exhaust fraction and the power ratio of the two turbines by coordinated manipulation of the EGR and VGT actuators. Unlike engines with a single turbocharger, in two-staged turbocharged engines, regulation of the power ratio of the turbines is also needed in order to adequately define the equilibrium point of the engine airpath. First, a mean value engine model (MVEM) is proposed to physically describe the air path dynamics. With rich excitation of the controls in the MVEM, we identify several linear models for different areas of the engine speed-torque envelope.
Technical Paper

Towards an Open Source Model for Engine Control Systems

2008-06-23
2008-01-1711
Traditionally, university research in engine technology has been focused on fundamental engine phenomena. Increasingly however, research topics are developing in the form of systems issues. Examples include air and exhaust gas recirculation (EGR) management, after-treatment systems, engine cooling, hybrid systems and energy recovery. This trend leads to the need for engine research to be conducted using currently available products and components that are re-configured or incrementally improved to support a particular research investigation. A production engine will include an electronic control unit (ECU) that must be understood and utilised or simply removed and circumvented. In general the intellectual property (IP) limitations places on ECUs by their suppliers mean that they cannot be used. The supplier of the ECU is usually unable to reveal any detail of the implementation. As a consequence any research using production hardware is seriously disadvantaged from the beginning.
Technical Paper

Energy Recovery Systems for Engines

2008-04-14
2008-01-0309
Energy recovery from IC engines has proved to be of considerable interest across the range of vehicle applications. The motivation is substantial fuel economy gain that can be achieved with a minimal affect on the “host” technology of the vehicle. This paper reviews the initial results of a research project whose objective has been to identify system concepts and control methods for thermal recovery techniques. A vapour power cycle is the means of energy transfer. The architecture of the system is considered along with support of the fuel economy claims with the results of some hybrid vehicle modelling. An overview of the latest experimental equipment and design of the heat exchanger is presented. The choice of control architecture and strategy, whose goal is overall efficiency of the engine system, is presented and discussed. Some initial control results are presented.
Technical Paper

Modeling and Control Design of a SOFC-IC Engine Hybrid System

2008-04-14
2008-01-0082
This paper presents a control system design strategy for a novel fuel cell - internal combustion engine hybrid power system. Dynamic control oriented models of the system components are developed. The transient behavior of the system components is investigated in order to determine control parameters and set-points. The analysis presented here is the first step towards development of a controller for this complex system. The results indicate various possibilities for control design and development. A control strategy is discussed to achieve system performance optimization.
Technical Paper

BSFC Investigation Using Variable Valve Timing in a Heavy Duty Diesel Engine

2009-04-20
2009-01-1525
Variable valve actuation in heavy duty diesel engines is not well documented, because of diesel engine feature, such as, unthrottled air handling, which gives little room to improve pumping loss; a very high compression ratio, which makes the clearance between the piston and valve small at the top dead center. In order to avoid strike the piston while maximizing the valve movement scope, different strategies are adopted in this paper: (1) While exhaust valve closing is fixed, exhaust valve opening is changed; (2) While exhaust valve closing is fixed, late exhaust valve opening: (3) While inlet valve opening is fixed, inlet valve closing is changed; (4) Delayed Inlet valve and exhaust valve openings and closings; (5) Changing exhaust valve timing; (6) changing inlet valve timing; (7) Changing both inlet and exhaust timing, will be used.
Technical Paper

The Potential for Thermo-Electric Regeneration of Energy in Vehicles

2009-04-20
2009-01-1333
The pursuit of improved fuel economy is becoming an increasingly important objective for automotive manufacturers. The field of thermo-electrics is highlighted as a promising technology. The figure of merit, Z is the primary measure of the effectiveness of a thermo-electric material, and the values now being offered by researchers have reached the level where new applications become attractive. It is feasible to consider such modules incorporated into a thermoelectric generator to recover waste heat from exhaust gas flow – an available energy stream that has traditionally been neglected as unusable. As a precursor to a costly experimental study it is desirable to accurately simulate the application of a thermo-electric system to a vehicle exhaust to understand both the feasibility and potential drawbacks.
Technical Paper

Quasi-Constant Volume (QCV) Spark Ignition Combustion

2009-04-20
2009-01-0700
The Otto cycle delivers theoretical maximum thermal efficiency. The traditional design of internal combustion engines using a simple slide-crank mechanism gives no time for a constant volume combustion which significantly reduces the cycle efficiency. In this study, using a high torque, high bandwidth, permanent magnet electric drive system attached to the crankshaft, variable angular velocities of the engine crankshaft were implemented. The system enabled reductions in piston velocity around the top dead centre region to a fraction of its value at constant crankshaft angular velocity typical in conventional engines. A quasi-constant volume combustion has thus been successfully achieved, leading to improvements in engine fuel consumption and power output which are discussed in detail.
Technical Paper

Prediction of NOx Emissions of a Heavy Duty Diesel Engine with a NLARX Model

2009-11-02
2009-01-2796
This work describes the application of Non-Linear Autoregressive Models with Exogenous Inputs (NLARX) in order to predict the NOx emissions of heavy-duty diesel engines. Two experiments are presented: 1.) a Non-Road-Transient-Cycle (NRTC) 2.) a composition of different engine operation modes and different engine calibrations. Data sets are pre-processed by normalization and re-arranged into training and validation sets. The chosen model is taken from the MATLAB Neural Network Toolbox using the algorithms provided. It is teacher forced trained and then validated. Training results show recognizable performance. However, the validation shows the potential of the chosen method.
Technical Paper

Modeling Techniques to Support Fuel Path Control in Medium Duty Diesel Engines

2010-04-12
2010-01-0332
In modern production diesel engine control systems, fuel path control is still largely conducted through a system of tables that set mode, timing and injection quantity and with common rail systems, rail pressure. In the hands of an experienced team, such systems have proved so far able to meet emissions standards, but they lack the analytical underpinning that lead to systematic solutions. In high degree of freedom systems typified by modern fuel injection, there is substantial scope to deploy optimising closed loop strategies during calibration and potentially in the delivered product. In an optimising controller, a digital algorithm will explicitly trade-off conflicting objectives and follow trajectories during transients that continue to meet a defined set of criteria. Such an optimising controller must be based on a model of the system behaviour which is used in real time to investigate the consequences of proposed control actions.
Technical Paper

Analysis of the Impact on Diesel Engine Fuel Economy and Emissions by Variable Compression Ratio Using GT-Power Simulation

2010-04-12
2010-01-1113
Variable compression ratio in conjunction with a control system is an effective way to improve performance and reduce emissions in a diesel engine. There are various methods that may be employed that include geometry changes and varying valve timing to change the effective compression ratio. In this paper, a simulation study is presented that is based on a modern, multi-cylinder, fixed compression ratio diesel engine equipped with exhaust gas recirculation (EGR) and a variable geometry turbocharger (VGT). The engine is represented using the GT-Power code, and includes a predictive combustion model. The aim of the investigation is to identify the impact of variable compression ratio on fuel economy and emission reduction and whether realistic optimal conditions exist. This paper describes how a formal design of experiments procedure is used to define the simulation conditions. Cost functions are defined with different weights for fuel consumption, NOx and soot emissions.
Technical Paper

Modelling the Compression Ignition Engine for Control: Review and Future Trends.

2004-03-08
2004-01-0423
Constraints change as pollutant standards or embedded diagnosis demands require improvements in model accuracy and their suitability for control algorithm synthesis. From thermodynamic mathematical modelling to non-parametric models, a wide range of techniques has been investigated for the last thirty years involving both physicists and control engineers. The purpose of this paper is to give an overview of current modelling techniques oriented control analysis and design for compression ignition engines. Short examples illustrate each techniques and existing applications are considered. Comparison of various engine models exhibit the trend to include more physical knowledge inside model-based control design.
X