Refine Your Search

Search Results

Viewing 1 to 10 of 10
Journal Article

Fuel Cell System Development: A Strong Influence on FCEV Performance

2018-04-03
2018-01-1305
In this article, the development challenges of a fuel cell system are explained using the example of the BREEZE! fuel cell range extender (FC-REX) applied in an FEV Liiona. The FEV Liiona is a battery electric vehicle based on a Fiat 500 developed by FEV. The BREEZE! system is the first applied 30 kW low temperature polymer electrolyte membrane (LT PEM) fuel cell system in the subcompact vehicle class. Due to the highly integrated system approach and dry cathode operation, a compact design of the range extender module with a system power density of 0.45 kW/l can be achieved so that the vehicle interior including trunk remains completely usable. System development for fuel cells significantly influences performance, efficiency, package, durability, and required maintenance effort of a fuel cell electric powertrain. In order to ensure safe and reliable operation, the fuel cell system has to be supplied with sufficient amounts of air, hydrogen, and coolant flows.
Journal Article

Performance Plus Range: Combined Battery Concept for Plug‑In Hybrid Vehicles

2013-04-08
2013-01-1525
PlugIn Hybrid Electric Vehicles (PHEV) offer the opportunity to experience electric driving without the risk of vehicle break-down due to a low battery charge state. Thus, PHEV's represent an attractive means of meeting future CO2-legislation. PHEV batteries must fulfill a divergent list of requirements: on the one hand, the battery must supply sufficient energy to ensure it can be driven an appropriate distance in EV-mode. On the other hand, even with a low state-of-charge (SOC), the battery must supply sufficient power to assist the engine in vehicle acceleration or to recuperate on deceleration. This leads to a compromise in terms of cell selection. Fundamentally, high energy cells cannot provide high charge and discharge rates and high power cells cannot provide sufficient energy.
Technical Paper

Synergies of Variable Valve Actuation and Direct Injection

2002-03-04
2002-01-0706
The main goal in the development of new automobile SI engines is to significantly reduce fuel consumption. To this end both, variable valve actuation and direct gasoline injection, are being pursued as new engine concepts. Both approaches appear to offer approximately the same potential to reduce fuel consumption. The development so far is creating the impression of two competing technical concepts with no obvious way to combine them [1]. The two engine concepts, however, can be combined, although it is often objected that their combination would only yield marginal additional potential. That is true to the extent that the advantages of dethrottling offered by both of the concepts can only be counted once in terms of overall potential. But there is a number of additional effects to be taken into account. This Paper represents an analysis of the individual potential of the two approaches as well as an estimation of their combined potential.
Technical Paper

Cost Effective Automotive Platform for ADAS and Autonomous Development

2018-04-03
2018-01-0588
This paper presents a cost effective development platform, named FEV-Driver, for Advanced Driver Assistance Systems (ADAS) and autonomous driving (AD). The FEV-Driver platform is an electric go-kart that was converted into an x-by-wire vehicle which represents the behavior of a full-scale electric vehicle. FEV-Driver has the advantage of being a small-scale vehicle that can be used with a significant lower safety risk compared to full-sized vehicles. The ADAS/AD algorithms for this platform were developed in both Simulink and C++ software and implemented within the Robot Operating System (ROS) middleware. Besides the description of the platform, Lane Keep Assist (LKA) and Automatic Emergency Braking (AEB) algorithms are discussed, followed by a path planning algorithm which enables the vehicle to drive autonomously after a manually controlled training lap. The modular system architecture allows for complete controller exchange or adaptation to different vehicles.
Technical Paper

Traction Battery and Battery Control Unit Development

2012-04-16
2012-01-0122
The performance of high voltage batteries is the key factor for further success of electric vehicles. The primary areas for battery development include high voltage (HV) and functional safety, maximum power and usable energy, battery life, packaging and weight reduction. This paper explains the development of the HV battery and the battery management system for the FEV Liona fleet, a retrofit of a pure electric powertrain into a FIAT 500. The multi-disciplinary process used to develop this program includes electrical, mechanical and functional aspects. The layout of the electrical system includes cell selection, layout of modules and the interconnection of twelve modules to a battery pack. The mechanical design of mounting the battery under the floor addresses the housing issues regarding robustness and sealing, the packaging into the vehicle as well as the positioning of the HV components inside the battery.
Technical Paper

Accelerated Powertrain Development Through Model Based Calibration

2006-04-03
2006-01-0858
Modern powertrain development is targeting to meet challenging, to some degrees contradictory development goals in a short timeframe. Looking to a development time schedule of 36 months from concept to SOP, it becomes a prerequisite that unnecessary design loops have to be avoided by all means. Now, in addition, the experimental development work has to be conducted more efficiently than in the past. In recent years methods for an efficient design process have been successfully applied. Testing and vehicle application work can take advantage of methods empowered by model based approaches. Today, models with different levels of detail are able to significantly improve nearly every development phase. Supported by standardized and automated test bench and vehicle procedures an efficient and comprehensive development process can be established and utilized, which is also necessary to tackle growing complexity.
Technical Paper

A Low NVH Range-Extender Application with a Small V-2 Engine - Based on a New Vibration Compensation System

2012-10-23
2012-32-0081
The interest in electric propulsion of vehicles has increased in recent years and is being discussed extensively by experts as well as the public. Up to now the driving range and the utilization of pure electric vehicles are still limited in comparison to conventional vehicles due to the limited capacity and the long charging times of today's batteries. This is a challenge to customer acceptance of a pure electric vehicle, even for a city car application. A Range Extender concept could achieve the desired customer acceptance, but should not impact the “electric driving” experience, and should not cause further significant increases in the manufacturing and purchasing cost. The V2 engine concept presented in this paper is particularly suited to a low cost, modular vehicle concept. Advantages regarding packaging can be realized with the use of two generators in combination with the V2 engine.
Technical Paper

Functional Safety for Hybrid and Electric Vehicles

2012-04-16
2012-01-0032
Hybrid and electric vehicles present a promising trade-off between the necessary reductions in emissions and fuel consumption, the improvement in driving pleasure and performance of today's and tomorrow's vehicles. These hybrid vehicles rely primarily on electronics for the control and the coordination of the different sub-systems or components. The number and complexity of the functions distributed over many control units is increasing in these vehicles. Functional safety, defined as absence of unacceptable risk due to the hazards caused by mal-function in the electric or electronic systems is becoming a key factor in the development of modern vehicles such as electric and hybrid vehicles. This important increase in functional safety-related issues has raised the need for the automotive industry to develop its own functional safety standard, ISO 26262.
Technical Paper

Benefits of the Electromechanical Valve Train in Vehicle Operation

2000-03-06
2000-01-1223
One of the most promising methods to reduce fuel consumption is to use unthrottled engine operation, where load control occurs by means of variable valve timing with an electromechanical valve train (EMV) system. This method allows for a reduction in fuel consumption while operating under a stoichiometric air-fuel-ratio and preserves the ability to use conventional exhaust gas aftertreatment technology with a 3-way-catalyst. Compared with an engine with a camshaft-driven valve train, the variable valve timing concept makes possible an additional optimization of cold start, warm-up and transient operation. In contrast with the conventionally throttled engine, optimized control of load and in-cylinder gas movement is made possible from the start of the first cycle. A load control strategy using a “Late Intake Valve Open” (LIO) provides a reduction in start-up HC emissions of approximately 60%.
Technical Paper

Low fuel consumption and low emissions~Electromechanical valve train in vehicle operation

2000-06-12
2000-05-0018
The electromechanical valve train (EMV) technology allows for a reduction in fuel consumption while operating under a stoichiometric air-fuel ratio and preserves the ability to use conventional exhaust gas aftertreatment technology with a 3-way catalyst. Compared with an engine with a camshaft-driven valve train, the variable valve timing concept makes possible an additional optimization of cold start, warm-up and transient operation. In contrast with the conventionally throttled engine, optimized control of load and in-cylinder gas movement can be used for each individual cylinder and engine cycle. A load control strategy using a "Late Intake Valve Open" (LIO) provides a reduction in start-up HC emissions of approximately 60%. Due to reduced wall-wetting, the LIO control strategy improves the transition from start to idle.
X