Criteria

Text:
Author:
Display:

Results

Viewing 1 to 30 of 49
2004-06-08
Technical Paper
2004-01-1914
Hideyuki Ogawa, Noboru Miyamoto, Atsushi Sakai, Keiichi Akao
The combustion characteristics in a partially premixed charge compression ignition (PCCI) engine with n-hexane were compared with ordinary diesel fuel to evaluate combustion improvements with lower distillation-temperature fuels. In the PCCI engine, a lean mixture was formed reasonably with early stage injection and the additional fuel was supplied with a second stage fuel injection after ignition. With n-hexane, thermal efficiency improved while simultaneously maintaining low NOx and smokeless combustion. A CFD analysis simulated the mixture formation processes and showed that the uniformity of the mixture with the first stage injection improves with lower distillation-temperature fuels.
1999-10-25
Technical Paper
1999-01-3495
Hideyuki Ogawa, Khandoker A. Raihanl, Ken-ichi Iizuka, Noboru Miyamoto
Changes in exhaust gas emissions during starting in a DI diesel engine were investigated. The THC after starting increased until around the 50th cycle when the fuel deposited on the combustion chamber showed the maximum, and THC then decreased to reach a steady value after about 1000 cycles when the piston wall temperature became constant. The NOx showed an initial higher peak just after starting, and increased to a steady value after about 1000 cycles. Exhaust odor had a strong correlation with THC, and at the early stage odor was stronger than would be expected from the THC concentration. The THC increased with increased fuel injection amounts, decreased cranking speeds, and fuels with higher viscosity, higher 90% distillation temperature, and lower ignitability.
2000-03-06
Technical Paper
2000-01-0231
Md. Nurun Nabi, Masahiro Minami, Hideyuki Ogawa, Noboru Miyamoto
Significant improvements in exhaust emissions and engine performance in an ordinary DI diesel engine were realized with highly oxygenated fuels. The smoke emissions decreased sharply and linearly with increases in oxygen content and entirely disappeared at an oxygen content of 38 wt-% even at stoichiometric conditions. The NOx, THC, and CO were almost all removed with a three-way catalyst under stoichiometric diesel combustion at both the higher and lower BMEP with the combination of EGR and a three-way catalyst. The engine output for the highly oxygenated fuels was significantly higher than that with the conventional diesel fuel due to the higher air utilization.
2009-04-20
Technical Paper
2009-01-1526
Hideyuki Ogawa, Noboru Miyamoto, Takao Kawabe, Shigeru Tosaka
In a DI diesel engine, THC emissions increase significantly with lower compression ratios, a low coolant temperature, or during the transient state. During the transient after a load increase, THC emissions are increased significantly to very high concentrations from just after the start of the load increase until around the 10th cycle, then rapidly decreased until the 20th cycle, before gradually decreasing to a steady state value after 1000 cycles. In the fully-warmed steady state operation with a compression ratio of 16 and diesel fuel, THC is reasonably low, but THC increases with lower coolant temperatures or during the transient period just after increasing the load. This THC increase is due to the formation of over-lean mixture with the longer ignition delay and also due to the fuel adhering to the combustion chamber walls. A low distillation temperature fuel such as normal heptane can eliminate the THC increase.
2006-10-16
Technical Paper
2006-01-3386
Hideyuki Ogawa, Tie Li, Noboru Miyamoto, Shingo Kido, Hejime Shimizu
This research investigates the influences of the injection timing, injection pressure, and compression ratio on the combustion and exhaust emissions in a single cylinder 1.0 L DI diesel engine operating with ultra-high EGR. Longer ignition delays due to either advancing or retarding the injection timing reduced the smoke emissions, but advancing the injection timing has the advantages of maintaining the thermal efficiency and preventing misfiring. Smokeless combustion is realized with an intake oxygen content of only 9-10% regardless of the injection pressure. Reduction in the compression ratio is effective to reduce the in-cylinder temperature and increase the ignition delay as well as to expand the smokeless combustion range in terms of EGR and IMEP. However, the thermal efficiency deteriorates with excessively low compression ratios.
2006-04-03
Technical Paper
2006-01-1147
Hideyuki Ogawa, Noboru Miyamoto, Hajime Shimizu, Shingo Kido
Ultra-low NOx and smokeless operation at higher loads up to half of the rated torque is attempted with large ratios of cold EGR. NOx decreases below 6 ppm (0.05 g/(kW·h)) and soot significantly increases when first decreasing the oxygen concentration to 16% with cold EGR, but after peaking at 12-14% oxygen, soot then deceases sharply to essentially zero at 9-10% oxygen while maintaining ultra low NOx and regardless of fuel injection quantity. However, at higher loads, with the oxygen concentration below 9-10%, the air/fuel ratio has to be over-rich to exceed half of rated torque, and thermal efficiency, CO, and THC deteriorate significantly. As EGR rate increases, exhaust gas emissions and thermal efficiency vary with the intake oxygen content rather than with the excess air ratio.
1994-03-01
Technical Paper
940675
Noboru Miyamoto, Hideyuki Ogawa, Toshio Shudo, Fumiaki Takeyama
A new concept DISC engine equipped with a two-stage injection system was developed. The engine was modified from a single cylinder DI diesel engine with large cylinder diameter (135mm). Combustion characteristics and exhaust emissions with regular gasoline were examined, and the experiments were also made with gasoline-diesel fuel blends with higher boiling temperatures and lower octane numbers. To realize stratified mixture distribution in combustion chamber flexibly, the fuel was injected in two-stages: the first stage was before the compression stroke to create a uniform premixed lean mixture and the second stage was at the end of the compression stroke to maintain stable ignition and faster combustion. In this paper, the effect of the two-stage injection on combustion and exhaust emissions were analyzed under several operating conditions.
1994-03-01
Technical Paper
940676
Noboru Miyamoto, Hideyuki Ogawa, Masahiko Shibuya, Keiji Arai, Olivier Esmilaire
The influence of the molecular structure of hydrocarbon fuels on soot, SOF, and NOx emissions from a diesel engine was analyzed while ignition delay and other physical fuel properties were kept constant. Mixtures of normal paraffin (n-tetradecane) and iso-paraffin (heptamethylnonane) were used as a base fuel and one of 5 kinds of hydrocarbons including mono-aromatic, di-aromatic, and non-aromatic was added. The aromatic content varied in the range of 0-60 vol % for the mono-aromatic fuels and 0-40 vol % for the di-aromatic fuels. The experimental results showed that regardless of the molecular structure of the fuel, both particulate and NOx emissions increased linearly with the C/H atomic ratio of the fuels under constant ignition lag. The increase in particulate emissions with C/H atomic ratio was caused by increases in dry soot. The SOF, THC, and BSEC were little affected by the C/H atomic ratio and molecular structure of the fuels.
1996-02-01
Technical Paper
960835
Akihiro Kido, Masaki Ueno, Hideyuki Ogawa, Noboru Miyamoto
Time-resolved and local ambient gas entrainment processes in intermittent gas jets with a range of injection conditions were evaluated by a LIFA (Laser-Induced Fluorescence of Ambient gas) technique. The gas injection conditions tested were: mean discharge velocity, um; mean discharge turbulence intensity, u′m; kinematic viscosity of the gas jet, ν; specific gravity of the gas jet, ρj; and of the ambient gas, ρa. Experimental results showed that the entrainment of jets are enhanced with higher eddy kinematic viscosity, νt, measured by a hot wire anemometer. In conclusion, the mean jet concentration was approximated with only one parameter, (ρj/ρa)D2/[(ν+νt)Δt].
1996-02-01
Technical Paper
960031
Iman K. Reksowardojo, Hideyuki Ogawa, Noboru Miyamoto, Yoshiteru Enomoto, Toru Kitamura
Diesel combustion and exhaust gas emissions under transient operation (when fuel amounts abruptly increased) were investigated under a wide range of operating conditions with a newly developed gas sampling system. The relation between gas emissions and piston wall temperatures was also investigated. The results indicated that after the start of acceleration NOx, THC and smoke showed transient behaviors before reaching the steady state condition. Of the three gases, THC was most affected by piston wall temperature; its concentration decreased as the wall temperature increased throughout the acceleration except immediately after the start of acceleration. The number of cycles, at which gas concentrations reach the steady-state value after the start of acceleration, were about 1.2 times the cycle constant of the piston wall temperature for THC, and 2.3 times for smoke.
1990-02-01
Technical Paper
900640
Noboru Miyamoto, Hideyuki Ogawa, Nobumasa Goto, Hiromi Sasaki
Soot emission from diesel engines generally increases with shorter ignition lags. However, the detailed process and mechanism of this phenomenon has not been well understood. This investigation attempts to observe and analyze the in-chamber soot formation process at various ignition lags by high-speed photography of the direct flame images and laser shadowgraphs as well as the laser light extinction. In the experiment, the separation of soot concentration from the soot-fuel mixture concentration was established by subtracting the laser light extinction intensity through a non-firing chamber from that through a firing chamber. It was found that the soot concentration in the swirl chamber reached a maximum value immediately after the start of combustion, and then decreased rapidly. With shorter ignition lags, the maximum and final soot concentrations in the chamber increased.
1997-02-24
Technical Paper
970750
Noboru Miyamoto, Hideyuki Ogawa, Akiyuki lemura, Iman K. Reksowardojo
Cycle-to-cycle changes in diesel exhaust gas emissions were investigated under two transient operation patterns: One, “an interval step decreasing and increasing load”, where the fuel amount is rapidly decreased from high to low loads, and after an interval, Δtint the fuel amount is abruptly returned to the initial level. The other is “a ramp increasing load”, where the fuel amount is increased gradually. Except just after the step increase in fuel amounts, the THC emissions were almost completely determined by the piston wall temperature and fuel amount. However, the THC concentrations immediately after the step increase in fuel amounts were much higher than the value of the corresponding steady state operation with the same piston wall temperature. This overshoot concentration, ΔTHC, was almost constant at different intervals, Δtint and it can be suppressed by ramp increased loading.
1996-10-01
Technical Paper
962115
Noboru Miyamoto, Hideyuki Ogawa, Teruyoshi Arima, Kenji Miyakawa
The effect of eight kinds of oxygenated agents added to diesel fuels on the combustion and emissions was investigated in a DI diesel engine. The results showed significant smoke and particulate suppression without increases in NOx with every oxygenated agent. The emissions decreased linearly with increasing oxygen content in the fuels, almost regardless of the kind of oxygenated agent. The improvement in smoke and particulate emissions with the oxygenated agent addition was more significant for lower volatility fuels. Combustion analysis with the two-dimensional two color method showed that soot concentration in the flame during the combustion process decreased with the addition of the oxygenated agent while the flame temperature distribution was almost unchanged.
1992-10-01
Technical Paper
922221
Noboru Miyamoto, Hideyuki Ogawa, Masahiko Shibuya, Tohru Suda
The effects of several fuel property variables on the emissions from a D.I. diesel engine were individually analyzed. The results showed that the smoke and dry soot increased with increased kinematic viscosity, shorter ignition lag, and higher aromatic content, especially at high equivalence ratios. Over the whole range of equivalence ratios, SOF depended on and increased with only ignition lag. The NOx improved slightly with increased kinematic viscosity, higher ignitability, and decreased aromatic content. The unburnt HC also improved with decreased kinematic viscosity and higher ignitability. The distribution shape of distillation curves had little influence on the emissions.
2000-03-06
Technical Paper
2000-01-1180
Hideyuki Ogawa, Noboru Miyamoto, Chenyu Li, Atsushi Sakai
The fuel spray distribution in a DI diesel engine with pilot injection was actively controlled by pilot and main fuel injections at different piston positions to prevent the main fuel injection from hitting the pilot flame. A CFD analysis demonstrated that the movement of the piston with a cavity divided by a central lip along the center of the sidewall effectively separates the cores of the pilot and main fuel sprays. Experiments showed that an ordinary cavity without the central lip emitted more smoke, while smokeless, low NOx operation was realized with a cavity divided by a central lip even at heavy loads where ordinary operation without pilot injection emits smoke.
2000-06-19
Technical Paper
2000-01-1819
Hideyuki Ogawa, Nurun Nabi, Masahiro Minami, Noboru Miyamoto, Kim Bong-Seock
Ultra low emissions and high performance combustion was achieved with a combination of high EGR, a three-way catalyst, and a highly oxygenated liquid fuel, neat dimethoxy methane (DMM), in an ordinary DI diesel engine. The smokeless nature of neat DMM effectively allowed stoichiometric diesel combustion by controlling BMEP with EGR. NOx, THC, and CO emissions were reduced with a three-way catalyst. At lower BMEP with excess air, the EGR effectively reduced NOx. High-speed video in a bottom view type engine revealed that luminous flame decreased with increased fuel oxygen content and almost disappeared with DMM.
2003-10-27
Technical Paper
2003-01-3190
Hideyuki Ogawa, Noboru Miyamoto, Masayuki Yagi
The thermal cracking and polyaromatic hydrocarbon (PAH) formation processes of dimethyl ether (DME), ethanol, and ethane were investigated with chemical kinetics to determine the soot formation mechanism of oxygenated fuels. The modeling analyzed three processes, an isothermal constant pressure condition, a temperature rising condition under a constant pressure, and an unsteady condition approximating diesel combustion. With the same mole number of oxygen atoms, the DME rich mixtures form much carbon monoxide and methane and very little non-methane HC and PAH, in comparison with ethanol or ethane mixtures. This suggests that the existence of the C-C bond promotes the formation of PAH and soot.
2003-05-19
Technical Paper
2003-01-1827
Hideyuki Ogawa, Noboru Miyamoto, Naoya Kaneko, Hirokazu Ando
Light naphtha, which exhibits two-stage ignition, was induced from the intake manifold for ignition enhancement and a low ignitability fuel or water, which does not exhibit low temperature oxidation, was directly injected early in the compression stroke for ignition suppression in an HCCI engine. Their quantitative balance was flexibly controlled to optimize ignition timing according to operating condition. Ultra-low NOx and smokeless combustion without knocking or misfiring was realized over a wide operating range. Alcohols inhibit low temperature oxidation more strongly than other oxygenated or unoxygenated hydrocarbons, water, and hydrogen. Chemical kinetic modeling for methanol showed a reduction of OH radical concentration before the onset of low temperature oxidation, and this may be the main mechanism by which alcohols inhibit low temperature oxidation.
2003-03-03
Technical Paper
2003-01-0746
Hideyuki Ogawa, Noboru Miyamoto, Naoya Kaneko, Hirokazu Ando
Direct injection of various ignition suppressors, including water, methanol, ethanol, 1-propanol, hydrogen, and methane, was implemented to control ignition timing and expand the operating range in an HCCI engine with induced DME as the main fuel. Ultra-low NOx and smoke-less combustion was realized over a wide operating range. The reaction suppressors reduced the rate of low-temperature oxidation and consequently delayed the onset of high-temperature oxidation. Analysis of the chemical kinetics showed a reduction of OH radical in the premixed charge with the suppressors. Among the ignition suppressors, alcohols had a greater impact on OH radical reduction resulting in stronger ignition suppression. Although water injection caused a greater lowering of the temperature, which also suppressed ignition, the strong chemical effect of radical reduction with methanol injection resulted in the larger impact on suppression of oxidation reaction rates.
2001-03-05
Technical Paper
2001-01-1259
Khandoker Abu Raihan, Fumito Takimoto, Hideyuki Ogawa, Noboru Miyamoto
Time resolved changes in unburned hydrocarbon emissions and their components were investigated in a DI diesel engine with a specially developed gas sampling system and gas chromatography. The tested transient operations include starting and increasing loads. At start-up with high equivalence ratios the total hydrocarbon (THC) at first increased, and after a maximum gradually decreased to reach a steady state value. Reducing the equivalence ratio of the high fueling at start-up and shortening the high fueling duration are effective to reduce THC emissions as long as sufficient startability is maintained. Lower hydrocarbons, mainly C1-C8, were the dominant components of the THC and mainly determined the THC behavior in the transient operations while the proportion of hydrocarbon (HC) components did not significantly change. The unregulated toxic substances, 1,3 butadiene and benzene were detected in small quantities.
2002-05-06
Technical Paper
2002-01-1743
Naoya Kaneko, Hirokazu Ando, Hideyuki Ogawa, Noboru Miyamoto
The control of fuel ignition timing and suppression of rapid combustion in a premixed charge compression ignition (PCCI) engine was attempted with direct in-cylinder injection of water as a reaction suppressor. The water injection significantly reduced the heat release at low temperature oxidation, which suppressed the increase in charge temperature after the low temperature oxidation and the rapid combustion caused by the high temperature oxidation. The possible engine operating range with ultra low NOx and smokeless combustion was extended to a higher load range with the water injection. Rapid combustion was suppressed by reductions in the maximum in-cylinder gas temperature due to water injection while the combustion efficiency suffered. Therefore, the maximum charge temperature needs to be controlled within an extremely limited range to maintain a satisfactory compromise between mild combustion and high combustion efficiency.
2002-03-04
Technical Paper
2002-01-0653
Akihiro Moriyoshi, Shin'ei Takano, Makoto Ono, Masa'aki Ogasawara, Masayoshi Tabata, Noboru Miyamoto, Sachio Ohta
Most countries consider it is harmful for humans to inhale SPM of fine organic particles and elemental carbon less than 2.5 μ in diameter1,2). It is generally believed that organic matters in SPM are mainly composed of diesel exhaust particulate and soot from residential chimneys or industrial smokestacks3,4). To determine the contribution ratios of several organic substances to SPM, we characterized SPM, diesel exhaust particulate (DEP), powdered summer radial tire, and bitumen, using high performance liquid chromatography, field desorption mass spectrometry and linear theory.
2002-10-21
Technical Paper
2002-01-2853
Md. Nurun Nabi, Hideyuki Ogawa, Noboru Miyamoto
The fundamental parameters related to engine combustion and performances, such as, heating value, theoretical air-fuel ratio, adiabatic flame temperature, carbon dioxide (CO2), and nitric oxide (NO) emissions, specific heat and engine thermal efficiency were investigated with computations for a wide range of oxygenated fuels. The computed results showed that almost all of the above combustion-related parameters are closely related to oxygen content in the fuels regardless of the kinds or chemical structures of oxygenated fuels. An interesting finding was that with the increase in oxygen content in the fuels NO emission decreased linearly, and the engine thermal efficiency was almost unchanged below oxygen content of 30 wt-% but gradually decreased above 30 wt-%.
2001-09-24
Technical Paper
2001-01-3502
Hideyuki Ogawa, Noboru Miyamoto, Chenyu Li, Satoshi Nakazawa, Keiichi Akao
Smokeless and ultra low NOx combustion without knocking in a dual-fuel diesel engine with induced LPG as the main fuel was established with a uniquely developed piston cavity divided by a lip in the sidewall. A small quantity of diesel fuel was directly injected at early compression stroke into the lower part of the cavity as an ignition source for this confined area, and this suppressed explosively rapid combustion just after ignition and spark-knock like combustion at later stage. A combination of the divided cavity, EGR, and intake air throttling was effective to simultaneously eliminate knocking, and reduce THC and NOx significantly.
1978-02-01
Technical Paper
780224
Tadashi Murayama, Minoru Tsukahara, Yasushi Morishima, Noboru Miyamoto
With the aid of static mixer and non-ionic emulsifying agent, a comparatively stable water-fuel emulsion was obtained. Engine performance in a 4 cycle direct injection engine using these fuels were studied. A large reduction of NOx concentration was obtained over the wide range of engine operation, in spite of increased ignition lag and rapid combustion. Furthermore, improvements of economy and reduction of exhaust smoke were obtained. The reduction of NOx concentration, fuel consumption and smoke were even more remarkable when compared with operating same engine with water fumigation.
1998-02-23
Technical Paper
980506
Noboru Miyamoto, Hideyuki Ogawa, Nabi Md. Nurun, Kouichi Obata, Teruyoshi Arima
Diesel combustion and emissions with four kinds of oxygenated agents as main fuels were investigated. Significant improvements in smoke, particulate matter, NOx, THC, and thermal efficiency were simultaneously realized with the oxygenates, and engine noise was also remarkably reduced for the oxygenates with higher ignitability. The improvements in the exhaust emissions and the thermal efficiency depended almost entirely on the oxygen content in the fuels regardless of the oxygenate to diesel fuel blend ratios and type of oxygenate. The unburned THC emission and odor intensity under starting condition with an oxygenate were also much lower than with conventional diesel fuel.
1998-02-01
Technical Paper
980146
Akihiro Kido, Shiro Kubota, Hideyuki Ogawa, Noboru Miyamoto
A new method to simultaneously measure temperature and concentration distributions in unsteady gas jets was established with an adaptation of the laser-induced fluorescence of iodine molecules seeded into ambient gas. Using the temperature dependence of iodine fluorescence spectra, the local temperature inside jets was determined with the ratio between the fluorescence intensities of two visualized images with different wavelengths. Jet concentrations were also determined with the images for the temperature measurements. The method was applied to an unsteady argon jet injected into hot argon-iodine ambient gases. The experimental results showed that the local temperature distribution in an unsteady gas jet were quite similar to the local concentration distributions.
1984-02-01
Technical Paper
840517
Tadashi Murayama, Hideyuki Ogawa, Noboru Miyamoto, Takemi Chikahisa
Spark-assisted diesel engines operated with alcohol fuels usually display misfiring or knocking problems. This paper presents an analysis of the factors influencing the ignition characteristics of ethanol in a swirl chamber diesel engine with a multi-spark ignitor. In the experiments, cycle-to-cycle combustion variations and the degree of knocking were investigated by changing engine parameters over a wide operating range. The results of the investigations showed that stable ignition and smooth combustion is achieved when a flammable mixture is formed in the vicinity of the spark plug when only a small amount of the injected fuel has evaporated. By optimizing the design factors, operation with high efficiency and low exhaust emissions was achieved.
1986-09-01
Technical Paper
861277
Shinichi Goto, Noboru Miyamoto, Tadashi Murayama
Remarkable progress has been made in recent years on pressure measuring techniques and apparatuses, yet they seem not necessarily successful in achieving accurate pressure diagrams at the high frequency range. The primary cause of difficulty lies in the occurrence of undesirable vibrations in the connecting passages which diminishes the accuracy of pressure diagrams. In order to prevent such vibration, the authors have attempted to increase the natural frequency in the connecting passages by enclosing heat resisting silicon oil, to analyse the frequency characteristics of the passages, and to ensure the propriety of the analysis through comparison with experiments. As a result, it is proved that the natural frequency of the silicon oil enclosed passage increases twice as high as that of the passage filled with working gas.
1986-09-01
Technical Paper
861232
Tadashi Murayama, Noboru Miyamoto, Takemi Chikahisa, Kohji Yamane
This paper is a systematic investigation of the effects of combustion and injection systems on hydrocarbon(HC) and particulate emissions from a DI diesel engine. Piston cavity diameter, swirl ratio, number of injection nozzle openings, and injection direction are varied as the experimental parameters, and the constituents in the soluble organic fraction (SOF) of the particulate were analyzed. The results show that the emission characteristics of deep dish chambers greatly differ from those of shallow dish chambers varying with the number of nozzle openings, the injection direction, and swirl intensity. The HC analysis shows mainly low carbon number gaseous HC constituents, and there is a tendency towards increasing polynucleation of polynuclear aromatic hydrocarbon(PAH) in SOF with increasing soot formation.
Viewing 1 to 30 of 49

Filter

  • Range:
    to:
  • Year: