Criteria

Text:
Author:
Display:

Results

Viewing 1 to 30 of 43
2010-10-25
Technical Paper
2010-01-2243
Jim Barker, G John Langley, Paul Richards
The need to meet the US 2007 emissions legislation has necessitated a change in Diesel engine technology, particularly to the fuel injection equipment (FIE). At the same time as these engine technology changes, legislation has dictated a reduction in fuel sulphur levels and there has also been increased use of fatty acid methyl esters (FAME) or biodiesel as a fuel blending component. The combination of changes to the engine and the fuel has apparently led to a sharp rise in the number of reports of field problems resulting from deposits within the FIE. The problem is usually manifested as a significant loss of power or the engine failing to start. These symptoms are often due to deposits to be found within the fuel injectors or to severe fouling of the fuel filter. The characteristics of the deposits found within different parts of the fuel system can be noticeably different.
2004-06-08
Technical Paper
2004-01-1939
Paul Richards, B. Terry, J. Chadderton, M. W. Vincent
In an attempt to improve ambient air quality, retrofit programmes have been encouraged; targeting reductions in PM emissions by means of diesel particulate filters (DPFs). However depending on the DPF design and operating conditions increased nitrogen dioxide (NO2) emissions have been observed, which is causing concern. Previous work showed that retrofitting a DPF system employing a fuel borne catalyst (FBC) to facilitate regeneration, reduced NO2 emissions. This paper outlines the investigation of a base metal coated DPF to enhance the reduction of NO2. Such a DPF system has been fitted to older technology buses and has demonstrated reliable field performance.
2011-08-30
Journal Article
2011-01-1924
Andreas Birgel, Nicos Ladommatos, Pavlos Aleiferis, Nebojsa Milovanovic, Paul Lacey, Paul Richards
Current developments in fuels and emissions regulations are resulting in an increasingly severe operating environment for diesel fuel injection systems. The formation of deposits within the holes or on the outside of the injector nozzle can affect the overall system performance. The rate of deposit formation is affected by a number of parameters, including operating conditions and fuel composition. For the work reported here an accelerated test procedure was developed to evaluate the relative importance of some of these parameters in a high pressure common rail fuel injection system. The resulting methodology produced measurable deposits in a custom-made injector nozzle on a single-cylinder engine. The results indicate that fuels containing 30%v/v and 100% Fatty Acid Methyl Ester (FAME) that does not meet EN 14214 produced more deposit than an EN590 petroleum diesel fuel.
2011-08-30
Technical Paper
2011-01-1836
Priyesh Patel, Ramanarayanan Balachandran, Nicos Ladommatos, Paul Richards
The fuel economy and emissions performance of a Diesel engine is strongly influenced by the fuel injection process. This paper presents early results of an experimental investigation into diesel spray development carried out in a novel in-house developed optical pressure chamber capable of operating at pressure up to 50 bar and temperatures up to 900 K. The spatial evolution of a diesel spray tends to experience many transitory macroscopic phenomena that directly influence the mixing process. These phenomena are not considered highly reproducible and are extremely short lived, hence recording and understanding these transient effects is difficult. In this study, high-speed backlight-illuminated imaging has been employed in order to capture the transient dynamics of a short signal duration diesel spray injected into incremental back pressures and temperatures reaching a maximum of 10 bar and 473 K respectively.
1999-10-25
Technical Paper
1999-01-3562
M. W. Vincent, Paul Richards, J-B Dementhon, B. Martin
Interest has been growing in many countries in the potential use of diesel particulate filters (DPF). This type of after treatment technology has been shown to make very significant reductions in both the mass of particulate emitted in diesel exhaust gas, and also in the number of fine particulates, which have been linked in recent years with concerns for human health. Work carried out during a development programme investigating the capability of fuel soluble metallic additives to assist DPF regeneration, indicated superior performance from a novel combination of metals in fuel soluble form. Earlier work showed that a fuel soluble combination of organo-metallic additives based on sodium and strontium gave very effective regeneration characteristics, and was capable of burning out carbon at temperatures from about 160°C.
2000-03-06
Technical Paper
2000-01-0474
Paul Richards, M. W. Vincent, S. L. Cook
Work was carried out on three passenger cars and a light truck. The test vehicles were chosen to cover a range of engine technologies. Different DPF technologies were also employed. The programme showed that an improved fuel additive based on the combination of iron and strontium compounds would allow all four vehicles to be successfully operated under a wide range of conditions. The three passenger cars were driven over the road for considerable distances. Regeneration of the DPF was successfully achieved under normal operating conditions in all the vehicles without recourse to use of additional heaters, fuel injection or other technique to assist regeneration. Fuel additive treat rate was low, suggesting that long-term operation without significant ash accumulation in the DPF could be achieved.
2005-04-11
Technical Paper
2005-01-0669
Paul Richards, M. W. Vincent, J. Chadderton
A dosing system has been developed to facilitate the addition of a fuel borne catalyst (FBC) to a vehicle's fuel supply. The on-board dosing system was primarily designed to reduce cost and complexity. One embodiment of the design provided an additional benefit, namely the automatic adjustment of treat rate according to duty cycle. For high duty operating cycles where average exhaust gas temperatures are high, a low treat rate of FBC is supplied. Conversely at low duty where the exhaust temperature is lower, a higher treat of FBC is delivered. Data from field applications are presented to demonstrate this feature.
2005-04-11
Technical Paper
2005-01-0662
A. Mayer, P. Nöthiger, L. Andreassen, S. Kany, Paul Richards, T. Andreoni, T. Sem
Transport Refrigeration Units (TRU) powered by small diesel engines emit high PM and cause locally high PM levels. The concomitant health risks spurred efforts to devise a cost-effective curtailment of these emissions. Diesel particulate filters (DPF) of ceramic honeycomb construction very efficiently trap PM emissions, even ultrafines in the lung penetrating size range of below 300 nm. A fuel borne catalyst (FBC) can facilitate trap regeneration, by lowering the exhaust temperature requirements, but cannot alone guarantee reliable regeneration under all operating conditions of the TRU. A Swiss development team together with industrial partners therefore developed a fully automatic active regeneration system for the California Air Resources Board.
2010-05-05
Journal Article
2010-01-1475
J Barker, Paul Richards, D Pinch, B Cheeseman
The fuel injection equipment (FIE) has always been paramount to the performance of the Diesel engine. Increasingly stringent emissions regulations have dictated that the FIE becomes more precise and sophisticated. The latest generation FIE is therefore less tolerant to deposit formation than its less finely engineered predecessors. However, the latest emissions regulations make it increasingly difficult for engine manufacturers to comply without the use of exhaust aftertreatment. This aftertreatment often relies on catalytic processes that can be impaired by non-CHON (carbon, hydrogen, oxygen and nitrogen) components within the fuel. Fuel producers have therefore also been obliged to make major changes to try and ensure that with the latest technology engines and aftertreatment systems the fuel is still fit for purpose. However, there has recently been a significant increase in the incidence of reported problems due to deposit build-up within vehicle fuel systems.
2009-06-15
Journal Article
2009-01-1877
Jim Barker, Paul Richards, Mark Goodwin, Jonathan Wooler
Recent developments in diesel engines and fuel injection equipment together with the move to ULSD and bio-blends have seen an increase in reports regarding deposits in both injectors and filters. Historically deposits have been generated from a number of sources: bio-contamination, both aerobic and non-aerobic, water contamination, lube oil adulteration, additives, dirt, metals in fuel, and biodiesel degradation. These may be ascribed to “poor housekeeping,” incorrect additivation, deliberate adulteration or some combination. However the recently observed deposits differ from these. The deposits are described and indicate possible precursor molecules that support proposed mechanisms and their ability to form filter deposits.
2009-11-02
Journal Article
2009-01-2642
Hu Li, Amanda Lea-Langton, Patrick Biller, Gordon E. Andrews, Seyed Hadavi, Alex Charlton, Paul Richards
This work investigates the effect of a multifunctional diesel fuel additive package used with RapeSeed Oil (RSO) as a fuel in a DI heavy duty diesel engine. The effects on fuel injectors’ cleanliness were assessed. The aim was to maintain combustion performance and preventing the deterioration of exhaust emissions associated with injector deposit build up. Two scenarios were investigated: the effect of deposit clean-up by a high dose of the additive package; and the effect of deposit prevention using a moderate dose of the additive package. Engine combustion performance and emissions were compared for each case against use of RSO without any additive. The engine used was a 6 cylinder, turbocharged, intercooled Perkins Phaser Engine, fitted with an oxidation catalyst and meeting the Euro II emissions limits. The tests were conducted under steady state conditions of 23kW and 47kW power output at an engine speed of 1500 rpm.
2009-11-02
Journal Article
2009-01-2637
Jim Barker, Paul Richards, Colin Snape, Will Meredith
Recent developments in diesel fuel injection equipment coupled with moves to using ULSD and biodiesel blends has seen an increase in the number of reports, from both engine manufacturers and fleet operators, regarding fuel system deposit issues. Preliminary work performed to characterise these deposits showed them to be complicated mixtures, predominantly carbon like but also containing other possible carbon precursor materials. This paper describes the application of the combination of hydropyrolysis, gas chromatography and mass spectrometry to the analysis of these deposits. It also discusses the insights that such analysis can bring to the constitution and origin of these deposits.
2008-10-06
Technical Paper
2008-01-2485
Klaus Schrewe, Christian Belcour, Paul Richards
The operating cycle of many vehicles fitted with diesel particulate filters is such that soot accumulates within the filter and must periodically be oxidised. Work was carried out on a passenger car engine to elucidate how fuel borne catalyst (FBC) to soot ratio, oxygen mass flow rate, temperature and soot loading influence the oxidation rate of soot accumulated in a sintered metal filter (SMF). Results show that soot loading had a major influence; increased soot loading increased the oxidation rate. The other parameter had a smaller influence with increasing oxygen flow rate and FBC/soot ratio each increasing the oxidation rate.
2008-10-06
Technical Paper
2008-01-2383
A. Birgel, N. Ladommatos, P. Aleiferis, S. Zülch, N. Milovanovic, V. Lafon, A. Orlovic, P. Lacey, Paul Richards
Current developments in fuels and emissions regulations are resulting in increasingly severe operating environment for the injection system. Formation of deposits within the holes of the injector nozzle or on the outside of the injector tip may have an adverse effect on overall system performance. This paper provides a critical review of the current understanding of the main factors affecting deposit formation. Two main types of engine test cycles, which attempt to simulate field conditions, are described in the literature. The first type involves cycling between high and low load. The second involves steady state operation at constant speed either at medium or high load. A number of influences on the creation of deposits are identified. This includes fouling through thermal condensation and cracking reactions at nozzle temperatures of around 300°C. Also the design of the injector holes is an influence, because it can influence cavitation.
2005-05-11
Technical Paper
2005-01-2146
Paul Richards, M. W. Vincent, J. Chadderton
Continuing research into the effect of vehicle emissions is driving legislation, which is increasingly being enacted to encourage the retrofitting of emissions control devices. Of particular concern are emissions of diesel particulate matter and nitrogen oxides. More recently the adverse effects of nitrogen dioxide in particular, have been highlighted. A programme of work is underway in Santiago to demonstrate the suitability of retrofitting diesel particulate filters (DPF) to urban buses. This paper presents data, including regulated and unregulated emissions, from a bus fitted with a DPF that relies on a fuel borne catalyst (FBC) to facilitate regeneration of the DPF.
2004-01-16
Technical Paper
2004-28-0013
Paul Richards
For many years now, epidemiologists have been highlighting the potential damage to health and the associated cost, caused by diesel particulate emissions. There is still debate concerning the crucial characteristics of these particles, however many authorities have concluded that it is their duty to legislate the reduction of such emissions. The most common approach is to legislate that all new vehicles should meet ever stricter emissions limits. This puts the onus and the cost on the engine manufacturers. The emissions limits in developing countries are inevitably less stringent than those in the developed world, this gives the indigenous manufacturers the opportunity to compete and develop. However, vehicle replacement intervals dictate that the effect of legislation controlling new vehicles takes many years to propagate throughout the existent vehicle fleet.
2007-07-23
Technical Paper
2007-01-2033
Paul Richards, J Reid, L-H Tok, I MacMillan
With growing concern over greenhouse gases there is increasing emphasis on reducing CO2 emissions. Despite engine efficiency improvements plus increased dieselisation of the fleet, increasing vehicle numbers results in increasing CO2 emissions. To reverse this trend the fuel source must be changed to renewable fuels which are CO2 neutral. A common route towards this goal is to substitute diesel fuel with esterified seed oils, collectively known as Fatty Acid Methyl Esters. However a fundamental change to the fuel chemistry produces new challenges in ensuring compatibility between fuel and engine performance/durability. This paper discusses the global situation and shows how fuel additives can overcome the challenges presented by the use of biodiesel.
2006-04-03
Technical Paper
2006-01-0420
Paul Richards, M. W. Vincent, K. Johansen, G. Mogensen
Due to concerns over NO2 emissions from platinum catalysts a base metal catalysed diesel particulate filter (DPF) has been developed and used in combination with fuel borne catalysts (FBC). Results are presented showing reductions in HC, NOX, NO2, and PAH emissions along with an assessment of the emissions of metals used in the FBC and the catalysed DPF. This data is used to show the likely reduction in overall iron and other metal emissions as a result of using the catalysed DPF/FBC system. A similar system has also been assessed for durability for over 2000 hours when fitted to a bus in regular service in Switzerland.
2005-01-19
Technical Paper
2005-26-020
Paul Richards
The most cost-effective way to reduce the level of diesel particulate emissions is to retrofit exhaust aftertreatment devices. While diesel oxidation catalysts will reduce the mass of particles emitted, they will not significantly reduce the number of ultrafine particles, that are considered the most harmful to health. Diesel Particulate Filters (DPFs) are therefore considered the most effective retrofit devices. One obstacle to the widespread adoption of DPFs is that many DPF technologies require low sulphur fuel. Using a Fuel Borne Catalyst (FBC) to facilitate regeneration of the DPF allows a sulphur tolerant DPF system to be produced.
1995-10-01
Technical Paper
952355
J.-B. Dementhon, B. Martin, Paul Richards, M. Rush, D. Williams, L. Bergonzini, P. Morelli
One of the most promising ways to insure the periodic regeneration of a particulate trap, consists of additising the fuel with organo-metallic compounds. The present paper deals with a novel alkali product, able to promote natural regenerations, for exhaust temperatures as low as 200 °C, and treatment rates as low as 5 ppm metal. Tests have been carried out on a soot reactor and on an engine bench, with various trap locations in the exhaust, showing that the regeneration occurrence depends on temperature, soot mass loaded inside the porous structure and engine conditions. A complete trap cleaning still needs gas temperatures up to 400 °C, which can be encountered for high load conditions of the engine.
1996-07-01
Technical Paper
961531
Paul Richards, Ken Wagner, Carl Konkel, Chris Smith, Lee Brown
The Hubble Space Telescope (HST) was designed to be serviced from the shuttle by astronauts performing extravehicular activities (EVA). During the first HST Servicing Mission (STS-61) two types of power tools were flown, the Power Ratchet Tool (PRT) and the HST Power Tool. Each tool had both benefits and drawbacks. An objective for the second HST servicing mission was to combine the reliability, accuracy, and programmability of the PRT with the pistol grip ergonomics and compactness of the HST Power Tool into a new tool called the EVA Pistol Grip Tool (PGT). The PGT is a self-contained, microprocessor controlled, battery powered, 3/8-inch drive hand-held tool. The PGT may also be used as a non-powered ratchet wrench. Numerous torque, speed, and turn or angle limits can be programmed into the PGT for use during various servicing missions. Batteries Modules are replaceable during ground, Intravehicular Activities (IVA), and EVA operations.
1992-10-01
Technical Paper
922232
D. E. Winterbone, E. Clough, K. K. Rao, Paul Richards, D. Williams
The atomisation characteristics of DI diesel engine fuel injection nozzles have been the subject of intensive study over the last decade. Much of this work has been related to clean, single hole nozzles spraying into quiescent air, at either ambient conditions or elevated pressures and temperatures. Experience shows that fuel injector nozzles may foul very rapidly in field service, and that this might have a significant effect on the performance of the engine particularly with regard to emissions. The build up of material on the injector nozzle can be controlled by the addition of suitable fuel additives. This paper describes test procedures developed to assess deposit build up and to indicate the efficacy of keep clean additives. The paper then goes on to describe high speed photographic techniques for studying the fuel spray characteristics of clean and fouled injectors in a firing engine.
1999-03-01
Technical Paper
1999-01-0112
Paul Richards, B Terry, M W Vincent, S L Cook
Diesel particulate filter (DPF) are well known as a developing form of exhaust after-treatment for compression ignition engines. Subjected to extensive testing in experimental form, DPFs have yet to achieve widespread application in regular use on production road vehicles, despite their potential for delivering reductions of typically 90% in diesel exhaust particulate emissions. Tests have shown that different additives are effective in enhancing performance in a range of DPF types, and on engines of different configurations. Efforts have been made to correlate performance with engine operating regime, by linking soot particulate condition to the frequency of regeneration. A performance index has been developed to try to predict regeneration characteristics with additive treated fuel. The work has shown that there are engine operating conditions producing soot which is less likely to burn off in the DPF.
2000-10-16
Technical Paper
2000-01-2849
M. W. Vincent, Paul Richards
Trapping diesel particulates is effective in reducing both the number and the mass of fine particulate emissions from diesel engines, but unless the accumulated soot can be burned out or regenerated periodically, the vehicle to which the trap is fitted will cease to function after a relatively short time. A programme of work with soot traps using a low treat rate iron-strontium organo-metallic fuel additive to assist and secure regeneration has been carried out. As part of this programme, an advanced specification diesel engine passenger car equipped with a diesel particulate filter (DPF), was operated on roads in the UK for approximately 18 months, during which time the vehicle covered over 50,000 km After completion of 50,000 km on roads, the vehicle was operated on a chassis dynamometer to increase the distance covered with a DPF more rapidly to a final total of 80,000 km.
2001-03-05
Technical Paper
2001-01-0902
Paul Richards, B. Terry, M. W. Vincent, J. Chadderton
In view of increasing concern over diesel particulates and tightening legislation to control their emission, much work has been done to develop diesel particulate filters (DPFs) and systems to allow them to work reliably. Although a filter will effectively trap solid particles, any material in the vapour phase, such as unburned hydrocarbons, may pass through the filter and subsequently condense. The use of a catalytic wash coat, either on the DPF itself or on a separate substrate, has been proposed to oxidise these hydrocarbons and thus reduce the total material emitted. The use of fuel borne catalysts to aid the regeneration of trapped material within the DPF is also well documented. Such catalyst will also catalyse the oxidation of any hydrocarbons bound up within the particulate. The oxidation of such hydrocarbon occurs at a lower temperature than that of carbon itself, thus allowing lower temperature regeneration of the DPF.
2000-06-19
Technical Paper
2000-01-1925
Paul Richards, M. W. Vincent, S. L. Cook
Four vehicles were chosen to cover a range of engine technologies. These vehicles were fitted with diesel particulate filters (DPFs) of differing technology. Three of the vehicles have been driven on the road using an additised fuel to demonstrate totally passive operation of the DPF. As part of this programme all three vehicles underwent regulated emissions testing to demonstrate that there was no deterioration in emissions during the programme. Additionally a light commercial vehicle was tested to demonstrate the effect on emissions of the combination of additised fuel and the DPF. The performance of the DPFs during on-road use has already been reported; this paper therefore concentrates on discussion of the results of the emissions testing.
2000-06-19
Technical Paper
2000-01-1922
B. Terry, Paul Richards
Fuel-borne catalysts are now an accepted means of aiding the self-regeneration of diesel particulate filters (DPFs). In the past it has been possible to assess the effect of these fuel additives by investigating the temperature at which the filter reaches a pressure drop equilibrium. Under these temperature conditions, the particulate matter is oxidised at the same rate as it is being deposited and there is thus no change in pressure drop across the filter. This technique adequately demonstrates the oxidation temperature of the carbon in the presence of the catalyst. However, it is now well known that such fuel additives also influence the low temperature oxidation of particulate bound hydrocarbons. This phenomenon is not detected by the filter equilibrium technique.
2003-01-18
Technical Paper
2003-26-0006
Paul Richards, R. Jouaneh, J. Bradley
Growing concern over the health effects of airborne particles and a desire to reduce the associated cost has resulted in legislation, regulations and other measures, in the industrialised world to severely restrict particulate emissions from diesel-fuelled automotive transport. Developing countries are also introducing initiatives to try and reduce emissions, an example is the legislation in India to replace diesel engines with gas fuelled engines in some major conurbations. Such measures are expensive, both in terms of replacing the engines of the vehicles and of implementing the required infrastructure. There is still also debate over whether such measures reduce the number of ultra-fine particulates. A well-proven alternative is to fit diesel engines with Diesel Particulate Filters (DPFs), either as original equipment or as a retrofit system. Regenerating DPFs has in the past been an obstacle to their widespread application.
2003-05-19
Technical Paper
2003-01-1883
Paul Richards, W Kalischewski
A diesel particulate filter (DPF) is a crucial weapon in the fight to control the downsides traditionally associated with diesel engined vehicles. The DPF not only produces the benefits required from an environmental standpoint but also has the consumer benefit of eliminating the visible black smoke associated with diesel engines. Thus DPFs have now become a reality, both for series production vehicles and as a retrofit application. Inevitably there are a number of alternative types of DPF and alternative techniques are used for ensuring they continue to function in an acceptable manner. Due to the complexity of the diesel combustion process and the emissions produced it is only to be expected that a device intended primarily to control one parameter would have some effect on other parameters. This paper looks at some different DPF technologies and how they effect emissions, with the emphasis on particulate emissions and the speciation of oxides of nitrogen.
2003-03-03
Technical Paper
2003-01-0382
M. W. Vincent, Paul Richards, D. J. Catterson
A novel dosing system for fuel borne catalyst (FBC), used to assist regeneration with a diesel particulate filter (DPF), has been developed. The system was designed for on-board vehicle use to overcome problems encountered with batch dosing systems. Important design features were simplicity, to minimise system cost, and the use of in-line dosing rather than batch dosing linked to tank refuelling. The paper describes the development of the dosing system which continuously doses FBC into the fuel line feeding the engine injection pump. The theoretical considerations behind the concept are explored, together with the realities imposed by fuelling regimes in which a variable proportion of the fuel flowing through the injection pump is passed back to the fuel tank. Two types of system are considered, ie where 1) FBC is added to the fuel in direct proportion to the flow rate of fuel and 2) FBC is added at a constant time-based rate.
Viewing 1 to 30 of 43

Filter

  • Range:
    to:
  • Year: