Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Development of a Fuel Economy and Exhaust Emissions Test Method with HILS for Heavy-Duty HEVs

2008-04-14
2008-01-1318
The objective of this study was to develop a test method for heavy-duty HEVs using a hardware-in-the-loop simulator (HILS) to enhance the type-approval-test method. To achieve our objective, HILS systems for series and parallel HEVs were actually constructed to verify calculation accuracy. Comparison of calculated and measured data (vehicle speed, motor/generator power, rechargeable energy storage system power/voltage/current/state of charge, and fuel economy) revealed them to be in good agreement. Calculation error for fuel economy was less than 2%.
Technical Paper

Stratification of Swirl Intensity in the Axial Direction for Control of Turbulence Generation During the Compression Stroke

1991-02-01
910261
Control of turbulence during the compression stroke is suggested by both theoretical calculations and experimental results obtained with an LDV measurement in a motored engine. The authors have found experimentally that when an axial distribution of swirl intensity exists, a large-scale annular vortex is formed inside the cylinder during the compression stroke and this vortex generates and transports turbulence energy. A numerical calculation is adopted to elucidate this phenomenon. Then, an axial stratification of swirl intensity is found to generate a large-scale annular vortex during the compression stroke by an interaction between the piston motion and the axial pressure gradient. The initial swirl profile is parametrically varied to assess its effect on the turbulence parameters. Among calculated results, turbulence energy is enhanced strongest when the swirl intensity is highest at the piston top surface and lowest at the bottom surface of the cylinder head.
Technical Paper

High Temperature Diesel Combustion in a Rapid Compression-Expansion Machine

1991-09-01
911845
According to previous papers on the combustion process in LHR diesel engines the combustion seems to deteriorate in LHR diesel engines. However it has been unclear whether this was caused by the high temperature gas or high temperature combustion chamber walls. This study was intended to investigate the effect of gas temperature on the rate of heat release through the heat release analysis and other measurements using a rapid compression-expansion machine. Experiments conducted at high gas temperatures which was achieved by the employment of oxygen-argon-helium mixture made it clear that the combustion at a high gas temperature condition deteriorated actually and this was probably due to the poorer mixing rate because of the increase in gas viscosity at a high gas temperature condition.
Technical Paper

Real Time Analysis of Particulate Matter by Flame Ionization Detection

1998-02-01
980048
The next generation of diesel engines will require substantial reductions in particulate matter (PM) emissions. In addition to strict regulations, one of the major problems in the development is the lack of sophisticated real-time PM analyzers. The current PM measurement technology consists of a dilution tunnel and filter weighing technique that was developed before the 1980s.(1) Such technology has reached its limit for today's diesel exhaust monitoring requirements in terms of response time and sensitivity. A flame ionization detector (FID), commonly used for measuring hydrocarbons, is proposed as a new analyzer for PM. In the past, spike signals observed from the FID when measuring diesel exhaust have been considered noise and a lot effort has been spent to reduce such interference from the slower FID signal. However, given a fast response time FID, these spike signals could be used to represent PM concentration in the sample.
Technical Paper

Comprehensive Characterization of Particulate Emissions from Advanced Diesel Combustion

2007-07-23
2007-01-1945
The applicability of several popular diesel particulate matter (PM) measurement techniques to low temperature combustion is examined. The instruments' performance in measuring low levels of PM from advanced diesel combustion is evaluated. Preliminary emissions optimization of a high-speed light-duty diesel engine was performed for two conventional and two advanced low temperature combustion engine cases. A low PM (<0.2 g/kg_fuel) and NOx (<0.07 g/kg_fuel) advanced low temperature combustion (LTC) condition with high levels of exhaust gas recirculation (EGR) and early injection timing was chosen as a baseline. The three other cases were selected by varying engine load, injection timing, injection pressure, and EGR mass fraction. All engine conditions were run with ultra-low sulfur diesel fuel. An extensive characterization of PM from these engine operating conditions is presented.
Technical Paper

A Numerical Simulation of Ignition Delay in Diesel Engines

1998-02-23
980501
To investigate the ignition process in a diesel spray, the ignition in a transient fuel spray is analyzed numerically by a simple quasi-steady spray model coupled with the Shell kinetics model at various operating conditions and validity of this model is assessed by a comparison with existing experimental data. The calculated results indicate that the competition between the heat absorption of fuel and the hot air entrainment determines the equivalence ratio of mixtures favorable for the ignition to occur in the shortest time.
Technical Paper

Detailed Diesel Exhaust Particulate Characterization and Real-Time DPF Filtration Efficiency Measurements During PM Filling Process

2007-04-16
2007-01-0320
An experimental study was performed to investigate diesel particulate filter (DPF) performance during filtration with the use of real-time measurement equipment. Three operating conditions of a single-cylinder 2.3-liter D.I. heavy-duty diesel engine were selected to generate distinct types of diesel particulate matter (PM) in terms of chemical composition, concentration, and size distribution. Four substrates, with a range of geometric and physical parameters, were studied to observe the effect on filtration characteristics. Real-time filtration performance indicators such as pressure drop and filtration efficiency were investigated using real-time PM size distribution and a mass analyzer. Types of filtration efficiency included: mass-based, number-based, and fractional (based on particle diameter). In addition, time integrated measurements were taken with a Rupprecht & Patashnick Tapered Element Oscillating Microbalance (TEOM), Teflon and quartz filters.
Technical Paper

Detailed Diesel Exhaust Particulate Characterization and DPF Regeneration Behavior Measurements for Two Different Regeneration Systems

2007-04-16
2007-01-1063
Three distinct types of diesel particulate matter (PM) are generated in selected engine operating conditions of a single-cylinder heavy-duty diesel engine. The three types of PM are trapped using typical Cordierite diesel particulate filters (DPF) with different washcoat formulations and a commercial Silicon-Carbide DPF. Two systems, an external electric furnace and an in-situ burner, were used for regeneration. Furnace regeneration experiments allow the collected PM to be classified into two categories depending on oxidation mechanism: PM that is affected by the catalyst and PM that is oxidized by a purely thermal mechanism. The two PM categories prove to contribute differently to pressure drop and transient filtration efficiency during in-situ regeneration.
Technical Paper

Fuel Consumption Test Protocol Concept for Plug-in Hybrid Electric Vehicle

2009-06-15
2009-01-1839
A plug-in hybrid vehicle (PHEV) is recently developed technology and it will be put in the market in the near future. In existing hybrid electric vehicles (HEV), it was possible to suppress the petroleum consumption by regenerating the kinetic energy of vehicles during deceleration into electrical energy. A PHEV can use petroleum fuel as with traditional vehicles including HEV, and in addition, use the electrical energy supplied from the commercial power for running energy. That is, the existing HEV technology suppresses petroleum energy consumption. In contrast, the PHEV technology alternates part of vehicle drive petroleum energy with electric energy. Commercial electric generation can use many kinds of energy source other than the fossil oil. PHEV is a promising technology to reduce the well to wheel CO2 emission and one of the solutions for energy security issue.
Technical Paper

Trapping Performance of Fine Particles from a Diesel Engine by Various DPFs with Different Surface Structures

2004-03-08
2004-01-0598
The regulation of particulate matter (PM) from diesel engines is coming to be very stringent at present. The usage of diesel particulate filter (DPF) is now under consideration in many heavy-duty diesel vehicle manufacturers to reduce PM emission from a diesel engine. The possibility that very fine particles may pass through DPF is suggested. The understanding of fine particles emission behaviors and the countermeasure of reducing particle emissions from DPF will come to be important in near future. The behavior of particle size distribution after DPF has not been studied enough yet. In this study, fine particles generated by a diesel engine are introduced to honeycomb type and SiC (Silicon Carbite) fiber type DPFs and the collection performances of fine particles by various DPFs with different surface structures have been examined.
Technical Paper

Mixture Formation and Auto-Ignition Behavior of Pure and Mixed Normal Paraffin Fuels

2003-10-27
2003-01-3096
Fuel formulation for premixed charge compression ignition (PCCI) combustion has been attempted based on the mixture formation and auto-ignition behavior of normal paraffin fuels. Different pure and mixed fuels with different blending ratios are tested. The mixture formation behavior is investigated photographically in a constant volume combustion chamber (CVCC) at elevated temperature and pressure. Auto-ignition behavior is tested in a Fuel Ignition Analyzer under different test conditions. It is found that the evaporation rate of pure n-paraffin fuel increases and the ignition delay becomes longer with decreases in the chain length. In the range of test condition used in this study, the flash-boiling phenomenon affects the fuel evaporation rate and ignition delay to some extent. Based on the experimental results a mixture of a very light mixture promoting component (MPC) and a moderately dense igniting component (IC) at a ratio of 3:1 is found to be optimum for PCCI combustion.
Technical Paper

Influence of Dilution Process on Engine Exhaust Nano-Particles

2004-03-08
2004-01-0963
Recently, particulate matter (PM) emission from internal combustion engines, especially particles having the diameter of less than 100 nm (Nano-particles) are being considered for their potential hazards posed to human health and the environment. Nano-particles are unstable and easily influenced by the conditions of engine operation and measurement techniques. In this study, the influences of cooling and dilution processes on nano- particles are presented to understand the generation and dilution mechanisms, and to further development of an accurate measurement method. It is found that the thermo-dilurter is necessary for measuring the nano-particles with higher accuracy. Accurate measurement of nano-particles requires immediate dilution of the exhaust gases by hot air.
Technical Paper

Measurement of the Rate of Multiple Fuel Injection with Diesel Fuel and DME

2001-03-05
2001-01-0527
The accuracy of the injection rate meter based on W. Zeuch's method in the measurement of multiple injection rate and amount was calibrated using a small cam driven piston that is driven by an electric motor. For the pre- or early-injection, a sensor with a high sensitivity can be applied to measure the small pressure increase due to the small injection amount. In case of the multiple injection that has the post and/or late injection, a pressure sensor with a low sensitivity must cover not only the large pressure increase due to the main injection but also the small pressure increase due to the post and/or late injection because the output of the high sensitivity sensor is saturated after the main injection. So the linearity of the low sensitivity pressure sensor was calibrated with the cam driven piston prior to the experiment with the actual injection system.
Technical Paper

Comparative Measurement of Nano-Particulates in Diesel Engine Exhaust Gas by Laser-Induced Incandescence (LII) and Scanning Mobility Particle Sizer (SMPS)

2004-06-08
2004-01-1982
Particulate Matter (PM) from diesel engines is thought to be seriously hazardous for human health. Generally, it is said that the hazard depends on the total number and surface area of particles rather than total mass of PM. In the conventional gravimetric method, only the total mass of PM is measured. Therefore, it is very important to measure not only the mass of PM but also size and number density of particulates. Laser-Induced Incandescence (LII) is a useful diagnostic for transient measurement of soot particulate volume fraction and primary particle size. On the other hand, Scanning Mobility Particle Sizer (SMPS) is also used to measure the size distribution of soot aggregate particulates at a steady state condition. However, the measurement processes and the phenomena used to acquire the information on soot particulate are quite different between the LII and SMPS methods. Therefore, it is necessary to understand the detailed characteristics of both LII and SMPS.
Technical Paper

Fundamental Study of Single Droplet and Droplets Array Combustion with Premixed Gas

2002-03-04
2002-01-0648
In the actual spray combustion fields, coupled combustion process should be occurred, between the pre-evaporate fuel component and remaining liquid droplets. Therefore it is insufficient to clarify the fundamental spray combustion mechanism with use of only droplet or only premixed mixture analyze method. In this study, the premixed mixture - droplets coupled combustion field was focused as a model of the actual spray combustion field. In the experiments, the effect of the flame pattern and the combustion rate constant by the interference between the droplets were clarified with the variation of fuels used by droplets. Besides, the effect of the premixed gas surrounding the droplets was clarified by the experiment on coupled combustion. The experiments were carried out under the normal gravity field and the micro gravity field to estimate the effect of convection in combustion field
Technical Paper

Influence of Thermo-Denuder Dimensions on Nano-particle Measurement

2003-05-19
2003-01-2018
The use of a Thermo-Denuder (TD) is proposed to suppress the nano-particle measurement fluctuations caused by the volatile components in the available techniques. The problems encountered during the use of thermo-denuder for nano-particle measurement and their respective solutions are suggested. The behavior of nano-particles in the TD itself is not clearly understood but the thermo-denuder influences both the volatile and solid particles. As a first report, only the effect of TD dimension on solid nano-particle measurements is presented. It is concluded that the TD influences the nano-particles i.e. loss of particles occurs even the sample gas contains no volatile fractions. A sharp temperature gradient between the low temperature wall of the absorption part of TD and hot sample gas causes particle losses due to thermophoresis effect. Especially the smaller particles are affected significantly.
Technical Paper

Fast Burning and Reduced Soot Formation via Ultra-High Pressure Diesel Fuel Injection

1991-02-01
910225
The relation between the characteristics of a non-evaporating spray and those of a corresponding frame achieved in a rapid compression machine was investigated experimentally. The fuel injection pressure was changed in a range of 55 to 260 MPa and the other injection parameters such as orifice diameter and injection duration were changed systematically. The characteristics of the non-evaporating spray such as the Sauter mean diameter and the mean excess air ratio of the spray were measured by an image analysis technique. The time required for a pressure rise due to combustion was taken as an index to characterize the flame. It was concluded that the mean excess air ratio of a spray is the major factor which controls the burning rate and that the high injection pressure is effective in shortening the combustion duration and reducing soot formation.
Technical Paper

2-D Soot Visualization in Unsteady Spray Flame by means of Laser Sheet Scattering Technique

1991-02-01
910223
The two-dimensional distribution of a soot cloud in an unsteady spray flame in a rapid compression machine(RCM) was visualized using the laser sheet scattering technique. A 40 mm x 50 mm cross section on the flame axis was illuminated by a thin laser sheet from a single pulsed Nd:YAG laser(wavelength 532 nm). Scattered light from soot particles was taken by a CCD camera via a high speed gated image intensifier. The temporal variation of the scattered light images were presented with the injection pressure as a parameter. The results showed that scattered light was intense near the periphery of the flame tip and that the scattered light becomes weaker significantly and disappears fast after the end of injection as injection pressure is increased. This technique was also applied to the visualization of the two-dimensional distribution of liquid droplets in the non-evaporating spray to correlate it with the soot concentration distribution.
Technical Paper

Exhaust Emission Behavior of Mixed Fuels having Different Component Cetane Number and Boiling Point

2003-05-19
2003-01-1868
To clarify the effect of fuel properties on diesel exhaust emissions, direct injection of two component fuels with approximately zero aromatic content and sulfur were attempted in a diesel engine. Fuels were prepared using paraffins having different cetane numbers and boiling points. Parameters considered are the Average Boiling Point (ABP) by volume and the difference of component characteristics for the same ABP. The results indicate that the trade off relation between NOx and particulate matter (PM) emissions depends significantly on ABP or density and is independent of the fuel component. On the other hand, components of the mixed fuels have significant influence on SOF and THC emissions. Fuels having higher amount of low boiling point components emit higher THC. Mixtures of low boiling point-high cetane number fuel and high boiling point-low cetane number fuel or fuel that contains normal paraffins only emit higher SOF.
Technical Paper

A Study on Precise Measurement of Diesel Fuel Injection Rate

1992-02-01
920630
An experimental evaluation of the reliability of the Zeuch's method was carried out. The following were derived: 1) cavitation limits the minimum back pressure available; 2) the injection rate measured by the Zeuch's method agrees with that by the W.Bosch's method; 3) the effect of dynamic pressure of the injected fuel jet has a negligible effect on the pressure sensor which is attached to the chamber wall; and 4) the high-frequency noise after the end of injection observed in the Zeuch's measurement can be effectively removed by either a low-pass filter or an inverse Fourier transform processing.
X