Refine Your Search

Topic

Affiliation

Search Results

Journal Article

Experimental Investigation of Droplet Dynamics and Spray Atomization inside Thermostatic Expansion Valves

2011-04-12
2011-01-0129
In this paper, experimental investigation on spray atomization and droplet dynamics inside a thermostatic expansion valve (TXV), a component commonly used in vehicle refrigeration system, was conducted. A needle and an orifice were copied from a commercial TXV and machined to be mounted inside a chamber with optical access so that the flow inside the TXV is simulated and visualized at the same time. The break-up and atomization of the refrigerant were documented near the downstream of the orifice under different feed conditions for two TXV with different geometry. A Phase Doppler Anemometry (PDA) system was used later to measure the size and velocity of atomized refrigerant droplets. The results showed that the droplet size variation along the radial direction is slightly decreased at near downstream and increased at farther downstream due to the coalescence.
Journal Article

Mixture Non-Uniformity in SCR Systems: Modeling and Uniformity Index Requirements for Steady-State and Transient Operation

2010-04-12
2010-01-0883
Selective catalytic reduction (SCR) of NOx is coming into worldwide use for automotive diesel emissions control. To meet the most stringent standards, NOx conversion efficiency must exceed 80% while NH3 emissions or slip must be kept below 10-30 ppm. At such high levels of performance, non-uniformities in ammonia-to-NOx ratio (ANR) at the converter inlet can limit the achievable NOx reduction. Despite its significance, this effect is frequently ignored in 1D catalyst models. The corresponding model error is important to system integration engineers because it affects system sizing, and to control engineers because it affects both steady-state and dynamic SCR converter performance. A probability distribution function (PDF) based method is introduced to include mixture non-uniformity in a 1D, real-time catalyst model.
Technical Paper

Droplet Behaviors of DI Gasoline Wall Impinging Spray by Spray Slicer

2020-04-14
2020-01-1152
Owing to the small size of engines and high injection pressures, it is difficult to avoid the fuel spray impingement on the combustion cylinder wall and piston head in Direct Injection Spark Ignition (DISI) engine, which is a possible source of hydrocarbons and soot emission. As a result, the droplets size and distribution are significantly important to evaluate the atomization and predict the impingement behaviors, such as stick, spread or splash. However, the microscopic behaviors of droplets are seldom reported due to the high density of small droplets, especially under high pressure conditions. In order to solve this problem, a “spray slicer” was designed to cut the spray before impingement as a sheet one to observe the droplets clearly. The experiment was performed in a constant volume chamber under non-evaporation condition, and a mini-sac injector with single hole was used.
Journal Article

A Semi-Detailed Chemical Kinetic Mechanism of Acetone-Butanol-Ethanol (ABE) and Diesel Blends for Combustion Simulations

2016-04-05
2016-01-0583
With the development of advanced ABE fermentation technology, the volumetric percentage of acetone, butanol and ethanol in the bio-solvents can be precisely controlled. To seek for an optimized volumetric ratio for ABE-diesel blends, the previous work in our team has experimentally investigated and analyzed the combustion features of ABE-diesel blends with different volumetric ratio (A: B: E: 6:3:1; 3:6:1; 0:10:0, vol. %) in a constant volume chamber. It was found that an increased amount of acetone would lead to a significant advancement of combustion phasing whereas butanol would compensate the advancing effect. Both spray dynamic and chemistry reaction dynamic are of great importance in explaining the unique combustion characteristic of ABE-diesel blend. In this study, a semi-detailed chemical mechanism is constructed and used to model ABE-diesel spray combustion in a constant volume chamber.
Technical Paper

Controlling Strategy for the Performance and NOx Emissions of the Hydrogen Internal Combustion Engines with a Turbocharger

2020-04-14
2020-01-0256
Hydrogen fuel is a future energy to solve the problems of energy crisis and environmental pollution. Hydrogen internal combustion engines can combine the advantage of hydrogen without carbon pollution and the main basic structure of the traditional engines. However, the power of the port fuel injection hydrogen engines is smaller than the same volume gasoline engine because the hydrogen occupies the volume of the cylinder and reduces the air mass flow. The turbocharger can increase the power of hydrogen engines but also increase the NOx emission. Hence, a comprehensive controlling strategy to solve the contradiction of the power, BTE and NOx emission is important to improve the performance of hydrogen engines. This paper shows the controlling strategy for a four-stroke, 2.3L hydrogen engine with a turbocharger. The controlling strategy divides the operating conditions of the hydrogen engine into six parts according to the engine speeds and loads.
Technical Paper

Analysis of the Spray Numerical Injection Modeling for Gasoline Applications

2020-04-14
2020-01-0330
The modeling of fuel jet atomization is key in the characterization of Internal Combustion (IC) engines, and 3D Computational Fluid Dynamics (CFD) is a recognized tool to provide insights for design and control purposes. Multi-hole injectors with counter-bored nozzle are the standard for Gasoline Direct Injection (GDI) applications and the Spray-G injector from the Engine Combustion Network (ECN) is considered the reference for numerical studies, thanks to the availability of extensive experimental data. In this work, the behavior of the Spray-G injector is simulated in a constant volume chamber, ranging from sub-cooled (nominal G) to flashing conditions (G2), validating the models on Diffused Back Illumination and Phase Doppler Anemometry data collected in vaporizing inert conditions.
Journal Article

Micro-Explosion Modeling of Biofuel-Diesel Blended Droplets

2011-04-12
2011-01-1189
Recently, with the increasing interest on some potential alternative substitutes of petroleum fuels such as biodiesel and butanol, more and more researches are focused on the field of bio-fuels because they are renewable and friendly to the environment and can possibly reduce domestic demand on foreign petroleum. Bio-fuels are generally used in the commercial market by mixing with petroleum-based diesel or gasoline. Since the volatilities and boiling points of ethanol/butanol and diesel/biodiesel fuels are significantly different, micro-explosion can be expected in the blend mixture. In this study, a numerical model of micro-explosion including bubble generation, bubble expansion, and final breakup for multi-component bio-fuel droplets is proposed. From the simulated results of droplet characteristics at the onset of micro-explosion, it is concluded that micro-explosion is possible under engine operation condition for ethanol/butanol-diesel/biodiesel fuel blends.
Journal Article

The Effects of EGR and Injection Timing on the Engine Combustion and Emission Performances Fueled by Butanol-Diesel Blends

2012-04-01
2011-01-2473
The combustion and emission characteristics of a diesel engine running on butanol-diesel blends were investigated in this study. The blending ratio of n-butanol to diesel was varied from 0 to 40 vol% using an increment of 10 vol%, and each blend was tested on a 2.7 L V6 common rail direction injection diesel engine equipped with an EGR system. The test was carried out under two engine loads at a constant engine speed, using various combinations of EGR ratios and injection timings. Test results indicate that n-butanol addition to engine fuel is able to substantially decrease soot emission from raw exhaust gas, while the change in NOx emissions varies depending on the n-butanol content and engine operating conditions. Increasing EGR ratio and retarding injection timing are effective approaches to reduce NOx emissions from combustion of n-butanol-diesel blends.
Journal Article

A Multi-Distribution Functions Droplet Evaporation Model using Continuous Thermodynamics

2012-04-01
2011-01-2395
A finite diffusion method is presented in this paper to model droplet evaporation for complex liquid mixture composed of different homogeneous groups. Multiple components fuel mixture is represented by separate distribution functions to describe the composition of each homogeneous group in the mixture. Only a few parameters are required to describe the mixture. Quasi-steady assumption is applied in the determination of evaporation rates and heat flux to the droplet, and the effects of surface regression, finite diffusion and preferential vaporization of the mixture are included in the liquid phase equations using an effective properties approach. The proposed model was validated by comparing against experimental measurements for single, isolated droplets of n-decane, kerosene, heptane-decane and diesel-butanol. The present model was applied to simulate the evaporation of isolated droplets with composition of typical diesel.
Journal Article

Spray Visualization and Characterization of a Dual-Fuel Injector using Diesel and Gasoline

2014-04-01
2014-01-1403
This paper focuses on the spray and atomization characteristics of a Dual-Fuel Injector (DFI) which includes a primary and a secondary fuel inlet. Three injectors were analyzed in this study. Apart from the DFI, two conventional diesel injectors were tested as baselines for comparison - a piezo-electric and a solenoid injector. The rail pressures ranged from 200 - 500 bar for the conventional injectors. The DFI was tested first as a single-fuel injector (by sealing the secondary inlet) at pressures ranging from 100 - 300 bar, and then in its dual-fuel mode with the primary inlet pressure ranging from 100 - 300 bar, and the secondary inlet at 25 bar higher than the primary pressure. Injection duration of 0.5 ms was chosen for the experiment. High-speed Mie scattering images were recorded to capture the spray evolution. Phase Doppler Anemometry (PDA) measurements were conducted at different locations in the spray for the acquisition of droplet sizes and velocity distributions.
Technical Paper

A Characteristic Study of Electronic In-line Pump System for Diesel Engines

2008-04-14
2008-01-0943
A new fuel injection equipment, the Electronic In-line Pump (EIP) system has been developed in this paper, in order to meet China's PHASE III emission regulation. A numerical model of the EIP system was built in the AMESim environment for the purpose of creating a design tool for engine application and system optimization. The model was used to predict key injection characteristics, i.e. injection pressure, injection rate, injection duration at different operating conditions, etc. To validate these predictions, experimental tests were conducted at the same model conditions. The results are quite encouraging, and in agreement with model predictions. Additional experiments were conducted to study the injection characteristics of the EIP system. These results show that the injection pressure and injection quantity are insensitive to injection timing variation due to the design of constant velocity cam profile.
Technical Paper

Effects of Injection Pressure on Low-sooting Combustion in an Optical HSDI Diesel Engine Using a Narrow Angle Injector

2010-04-12
2010-01-0339
An optically accessible single-cylinder high-speed direct-injection (HSDI) diesel engine equipped with a Bosch common rail injection system was used to study effects of injection pressures on the in-cylinder spray and combustion processes. An injector with an injection angle of 70 degrees and European low sulfur diesel fuel (cetane number 54) were used in the work. The operating load was 2.0 bar IMEP with no EGR added in the intake. The in-cylinder pressure was measured and the heat release rate was calculated. High-speed Mie-scattering technique was employed to visualize the liquid distribution and evolution. High-speed combustion video was also captured for all the studied cases using the same frame rate. NOx emissions were measured in the exhaust pipe. The experimental results indicated that for all of the conditions the heat release rate was dominated by a premixed combustion pattern. Two-stage low temperature reaction was seen for early injection timings.
Technical Paper

Experimental Evaluation of Electrostatically Assisted Injection and Combustion of Ethanol-Gasoline Mixtures for Automotive Applications

2010-04-12
2010-01-0171
A single nozzle port fuel injector was modified to apply electrostatic charge to the fuel stream, with the intention of studying electrostatically assisted sprays in a practical, port-injected engine. The modifications were kept external to the injector and involved placing an electrode and insulating liner over the tip of the injector. The performance of the modified injector, which combined pressure driven and electrostatic atomization, was characterized in three phases: the injector sprays themselves were studied, combustion of charged fuel droplets was studied, and the injector was installed and tested on a single cylinder spark ignition engine. In the first phase, Fraunhofer diffraction measurements of droplet size, and particle image velocimetry measurements of droplet velocity were performed. The charge transferred by the sprays was measured using an electrometer, and typical forces exerted on droplets in the sprays were estimated.
Technical Paper

Spray and Atomization Characterization of a Micro-Variable Circular-Orifice (MVCO) Fuel Injector

2011-04-12
2011-01-0679
HCCI/PCCI combustion concepts have been demonstrated for both high brake thermal efficiency and low engine-out emissions. However, these advanced combustion concepts still could not be fully utilized partially due to the limitations of conventional fixed spray angle nozzle designs for issues related to wall wetting for early injections. The micro-variable circular orifice (MVCO) fuel injector provides variable spray angles, variable orifice areas, and variable spray patterns. The MVCO provides optimized spray patterns to minimize combustion chamber surface-wetting, oil dilution and emissions. Designed with a concise structure, MVCO can significantly extend the operation maps of high efficiency early HCCI/PCCI combustion, and enable optimization of a dual-mode HCCI/PCCI and Accelerated Diffusion Combustion (ADC) over full engine operating maps. The MVCO variable spray pattern characteristics are analyzed with high speed photographing.
Technical Paper

An Efficient and Unified Combustion Model for CFD of SI and CI Engine Operation

2017-03-28
2017-01-0572
In this work, an efficient and unified combustion model is introduced to simulate the flame propagation, diffusion-controlled combustion, and chemically-driven ignition in both SI and CI engine operation. The unified model is constructed upon a G-equation model which addresses the premixed flame propagation. The concept of the Livengood-Wu integral is used with tabulated ignition delay data to account for the chemical kinetics which is responsible for the spontaneous ignition of fuel-air mixture. A set of rigorously defined operations are used to couple the evolution of the G scalar field and the Livengood-Wu integral. The diffusion-controlled combustion is simulated equivalent to applying the Burke-Schumann limit. The combined model is tested in the simulation of the premixed SI combustion in a constant volume chamber, as well as the CI combustion in a conventional small bore diesel engine.
Technical Paper

Control-Oriented Modeling of Soot Emissions in Gasoline Partially Premixed Combustion with Pilot Injection

2017-03-28
2017-01-0511
In this paper, a control-oriented soot model was developed for real-time soot prediction and combustion condition optimization in a gasoline Partially Premixed Combustion (PPC) Engine. PPC is a promising combustion concept that achieves high efficiency, low soot and NOx emissions simultaneously. However, soot emissions were found to be significantly increased with high EGR and pilot injection, therefore a predictive soot model is needed for PPC engine control. The sensitivity of soot emissions to injection events and late-cycle heat release was investigated on a multi-cylinder heavy duty gasoline PPC engine, which indicated main impact factors during soot formation and oxidation processes. The Hiroyasu empirical model was modified according to the sensitivity results, which indicated main influences during soot formation and oxidation processes. By introducing additional compensation factors, this model can be used to predict soot emissions under pilot injection.
Technical Paper

An Optical Investigation of Multiple Diesel Injections in CNG/Diesel Dual-Fuel Combustion in a Light Duty Optical Diesel Engine

2017-03-28
2017-01-0755
Dual-fuel combustion combining a premixed charge of compressed natural gas (CNG) and a pilot injection of diesel fuel offer the potential to reduce diesel fuel consumption and drastically reduce soot emissions. In this study, dual-fuel combustion using methane ignited with a pilot injection of No. 2 diesel fuel, was studied in a single cylinder diesel engine with optical access. Experiments were performed at a CNG substitution rate of 70% CNG (based on energy) over a wide range of equivalence ratios of the premixed charge, as well as different diesel injection strategies (single and double injection). A color high-speed camera was used in order to identify and distinguish between lean-premixed methane combustion and diffusion combustion in dual-fuel combustion. The effect of multiple diesel injections is also investigated optically as a means to enhance flame propagation towards the center of the combustion chamber.
Technical Paper

NOx Reduction in Compression-Ignition Engine by Inverted Ignition Phi-Sensitivity

2017-03-28
2017-01-0749
A new approach of NOx reduction in the compression-ignition engine is introduced in this work. The previous research has shown that during the combustion stage, the high temperature ignition tends to occur early at the near-stoichiometric region where the combustion temperature is high and majority of NOx is formed; Therefore, it is desirable to burn the leaner region first and then the near-stoichiometric region, which inhibits the temperature rise of the near-stoichiometric region and consequently suppresses the formation of NOx. Such inverted ignition sequence requires mixture with inverted phi-sensitivity. Fuel selection is performed based on the criteria of strong ignition T-sensitivity, negligible negative temperature coefficient (NTC) behavior, and large heat of vaporization (HoV).
Technical Paper

Effect of Hydrogen Fraction on Laminar Flame Characteristics of Methanol-Hydrogen-Air Mixture at Atmospheric Pressure

2017-10-08
2017-01-2277
Methanol has been regarded as a potential transportation fuel due to its advanced combustion characteristics and flexible source. However, it is suffering from misfire and high HC emissions problems under cold start and low load conditions either on methanol SI engine or on methanol/diesel dual fuel engine. Hydrogen is a potential addition that can enhance the combustion of methanol due to its high flammability and combustion stability. In the current work, the effect of hydrogen fraction on the laminar flame characteristics of methanol- hydrogen-air mixture under varied equivalence ratio was investigated on a constant volume combustion chamber system coupled with a schlieren setup. Experiments were performed over a wide range of equivalence ratio of the premixed charge, varied from 0.8 to 1.4, as well as different hydrogen fraction, 0%, 5%, 10%, 15% and 20% (n/n). All tests were carried out at fixed temperature and pressure of 400K and 0.1MPa.
Technical Paper

Effect of Hydrogen Volume Ratio on the Combustion Characteristics of CNG-Diesel Dual-Fuel Engine

2017-10-08
2017-01-2270
CNG-diesel dual fuel combustion mode has been regarded as a practical operation strategy because it not only can remain high thermal efficiency but also make full use of an alternative fuel, natural gas. However, it is suffering from misfire and high HC emissions under cold start and low load conditions. As known, hydrogen has high flammability. Thus, a certain proportion of hydrogen can be added in the natural gas (named HCNG) to improve combustion performance. In this work, the effect of hydrogen volume ratio on combustion characteristics was investigated on an optically accessible single-cylinder CNG-diesel engine using a Phantom v7.3 color camera. HCNG was compressed into the tank under different hydrogen volume ratios varied from 0% to 30%, while the energy substitution rate of` HCNG remained at 70%.
X