Refine Your Search

Topic

Affiliation

Search Results

Journal Article

Handling and Ride Performance Sensitivity Analysis for a Truck-Trailer Combination

2010-04-12
2010-01-0642
A truck-trailer combination is modeled using ADAMS/Car from MSC Software for handling and ride comfort performance simulations. The handling events include a double lane change and lateral roll stability. The ride comfort performance events include several sized half-rounds and various RMS courses. The variables for handling performance evaluation include lateral acceleration, roll angles and tire patch normal loads. The variables for ride performance evaluation are absorbed power and peak acceleration. This study considers the trailer spring stiffness, anti-roll bar and jounce bumper gap as the design variables. Through DOE simulations, we derived the response surface models of various performance variables so that we could consider the performance sensitivities to the design variables.
Journal Article

Understanding Measured Spindle Loads Differences with Advanced Tire Model

2010-04-12
2010-01-0378
In this study, a full vehicle with advanced LMS comfort and durability tire (CDT) model was established with ADAMS software to predict the spindle loads of the vehicle under a severe proving ground rough road event. From a series of simulations with various design changes, the spindle loads sensitivities to those design changes were identified. The simulated results were also compared with the measured data and a good correlation was achieved.
Journal Article

Modeling, Experimentation and Sensitivity Analysis of a Pneumatic Brake System in Commercial Vehicles

2014-04-01
2014-01-0295
The main purpose of this research is to investigate the optimal design of pipeline diameter in an air brake system in order to reduce the response time for driving safety using DOE (Design of Experiment) method. To achieve this purpose, this paper presents the development and validation of a computer-aided analytical dynamic model of a pneumatic brake system in commercial vehicles. The brake system includes the subsystems for brake pedal, treadle valve, quick release valve, load sensing proportional valve and brake chamber, and the simulation models for individual components of the brake system are established within the multi-domain physical modeling software- AMESim based on the logic structure. An experimental test bench was set up by connecting each component with the nylon pipelines based on the actual layout of the 4×2 commercial vehicle air brake system.
Journal Article

Optimization Design of a Six-Point Powetrain Mounting System with Flexible Support Rod

2014-04-01
2014-01-1682
NVH quality is one of the most important criteria by which people judge the design of a vehicle. The Powertrain Mounting System (PMS), which can reduce the vibration from engine to vehicle cab as well as the inside noise, has attained significant attention. Much research has been done on the isolation method for three- and four-point mounting. But the six-point mounting system, which is usually equipped in commercial vehicle, is seldom studied and should be paid more attention. In this paper, the support rod installed on the upside of the transmission case is considered as a flexible body. Thus a rigid-flexible coupling model of PMS is established and the necessity of the established model is analyzed by comparing the simulation results of the new model and those of the conventional model.
Journal Article

Ride Optimization for a Heavy Commercial Vehicle

2014-04-01
2014-01-0843
The ride comfort of the commercial vehicle is mainly affected by several vibration isolation systems such as the primary suspension system, engine mounting system and the cab mounting system. A rigid-flexible coupling model for the truck was built and analyzed in multi-body environment (ADAMS). The method applying the excitation on the wheels center and the engine mountings in time domain was presented. The variables' effects on the ride performance were studied by design of experiment (DOE). The optimal design was obtained by the co-simulation of the ADAMS/View, iSIGHT and Matlab. It was found that the vertical root mean square (RMS) acceleration and frequency-weighted RMS acceleration on the seat track were reduced about 17% and 11% respectively at different speeds relative to baseline according to ISO 2631-1.
Journal Article

Modeling Air-Spring Suspension System of the Truck Driver Seat

2014-04-01
2014-01-0846
The suspension system of a heavy truck's driver seat plays an important role to reduce the vibrations transmitted to the seat occupant from the cab floor. Air-spring is widely used in the seat suspension system, for the reason that its spring rate is variable and it can make the seat suspension system keep constant ‘tuned’ frequency compared to the conventional coil spring. In this paper, vibration differential equation of air-spring system with auxiliary volume is derived, according to the theory of thermodynamic, hydrodynamics. The deformation-load static characteristic curves of air-spring is obtained, by using a numerical solution method. Then, the ADAMS model of the heavy truck's driver seat suspension system is built up, based on the structure of the seat and parameters of the air-spring and the shock-absorber. At last, the model is validated by comparing the simulation results and the test results, considering the seat acceleration PSD and RMS value.
Journal Article

Tire Model Application and Parameter Identification-A Literature Review

2014-04-01
2014-01-0872
A tire may be one of the most critical and complex components in vehicle dynamics and road loads analyses because it serves as the only interface between the road surface and the vehicle. Extensive research and development activities about vehicle dynamics and tire models have been published in the past decades, but it is still not clear about the applications and parameter identification associated with all of these tire models. In this literature review study, various published tire models used for vehicle dynamics and road loads analyses are compared in terms of their modeling approaches, applications and parameters identification process and methodologies. It is hoped that the summary of this literature review work can help clarify and guide the future research and development direction about tire modeling.
Journal Article

A Polynomial Chaos-Based Method for Recursive Maximum Likelihood Parameter Estimation of Load Sensing Proportional Valve

2014-04-01
2014-01-0721
In this paper, a new computational method is provided to identify the uncertain parameters of Load Sensing Proportional Valve (LSPV) in a heavy truck brake system by using the polynomial chaos theory. The simulation model of LSPV is built in the software AMESim depending on structure of the valve, and the estimation process is implemented relying on the experimental measurements by pneumatic bench test. With the polynomial chaos expansion carried out by collocation method, the output observation function of the nonlinear pneumatic model can be transformed into a linear and time-invariant form, and the general recursive functions based on Newton method can therefore be reformulated to fit for the computer programming and calculation. To improve the estimation accuracy, the Newton method is modified with reference to Simulated Annealing algorithm by introducing the Metropolis Principle to control the fluctuation during the estimation process and escape from the local minima.
Journal Article

Suspension Kinematic/Compliance Uncertain Optimization Using a Chebyshev Polynomial Approach

2015-04-14
2015-01-0432
The optimization of vehicle suspension kinematic/compliance characteristics is of significant importance in the chassis development. Practical suspension system contains many uncertainties which may result from poorly known or variable parameters or from uncertain inputs. However, in most suspension optimization processes these uncertainties are not accounted for. This study explores the use of Chebyshev polynomials to model complex nonlinear suspension systems with interval uncertainties. In the suspension model, several kinematic and compliance characteristics are considered as objectives to be optimized. Suspension bushing characteristics are considered as design variables as well as uncertain parameters. A high-order response surface model using the zeros of Chebyshev polynomials as sampling points is established to approximate the suspension kinematic/compliance model.
Journal Article

An Improved Human Biodynamic Model Considering the Interaction between Feet and Ground

2015-04-14
2015-01-0612
Nowadays, studying the human body response in a seated position has attracted a lot of attention as environmental vibrations are transferred to the human body through floor and seat. This research has constructed a multi-body biodynamic human model with 17 degrees of freedom (DOF), including the backrest support and the interaction between feet and ground. Three types of human biodynamic models are taken into consideration: the first model doesn't include the interaction between the feet and floor, the second considers the feet and floor interaction by using a high stiffness spring, the third one includes the interaction by using a soft spring. Based on the whole vehicle model, the excitation to human body through feet and back can be obtained by ride simulation. The simulation results indicate that the interaction between feet and ground exerts non-negligible effect upon the performance of the whole body vibration by comparing the three cases.
Technical Paper

Dynamics and Control of Gearshifts in Wet-Type Dual Clutch Transmission for BEVs

2020-04-14
2020-01-0767
The dual clutch transmission is one of the possible choices for electric vehicle drivelines. The basic principle and control mode of shifting of wet dual clutch transmission are introduced, and the dynamic process of shifting of wet double clutch transmission is studied. Combined with the dynamic model of the wet clutch engagement process, the difference between the dynamic characteristics of the dual clutch transmission modeling using the Coulomb friction model and the dual-clutch transmission model using the average flow model and the micro-convex contact theory is analyzed. The shift control strategy of the dual clutch transmission proposes a correction method to improve the shifting smoothness. Studies have shown that the torque response of the wet clutch has significant hysteresis, and the improved control algorithm can significantly improve the shifting smoothness of the wet dual clutch transmission.
Technical Paper

Multi-Mode Controller Design for Active Seat Suspension with Energy-Harvesting

2020-04-14
2020-01-1083
In this paper, a multi-mode active seat suspension with a single actuator is proposed and built. A one-DOF seat suspension system is modelled based on a quarter car model of commercial vehicle with an actuator which is comprised of a DC motor and a gear reducer. Aiming at improving ride comfort and reducing energy consumption, a multi-mode controller is established. According to the seat vertical acceleration and suspension dynamic travel signals, control strategies switch between three modes: active drive mode, energy harvesting mode and plug breaking mode.
Journal Article

Robust Optimal Design for Enhancing Vehicle Handling Performance

2008-04-14
2008-01-0600
A robust design procedure is applied to achieve improved vehicle handling performance as an integral part of simulation-based vehicle design. This paper presents a hybrid robust design method, the robust design process strategy (RDPS), which makes full use of the intense complementary action of characteristics between the Response Surface Methodology (RSM) and the Taguchi method, to get the robust design of the vehicle handling performance. The vehicle multi-body dynamic model is built in the platform that is constructed by the software of iSIGHT, ADAMS/CAR, and MATLAB. The design-of-experiment method of the Latin Hypercube (LHC) is used to obtain the approximate area values, and then the RDPS is utilized to achieve improved vehicle handling performance results. The validation is made by the Monte Carlo Simulation Technique (MCST) in terms of the effectiveness of the RDPS in solving robust design problems.
Journal Article

Balance of Static and Dynamic Rollover Thresholds for a Three-Axle Vehicle

2011-09-13
2011-01-2152
In this study, a three-axle vehicle model established with ADAMS/Car is first correlated with field test data from quasi-static tilt table and highly dynamic NATO double lane change maneuver tests, respectively. It is then applied to predict the vehicle static rollover threshold (SRT) and dynamic rollover threshold (DRT). With the optimization approach proposed in this study it is possible to efficiently tune the anti-roll bar stiffness at each axle, to either maximize SRT or DRT, or balance both. The sensitivity results derived from the optimization iteration process can be applied to effectively size the three anti-roll bars that balance the static and dynamic roll stability performances. The proposed method can be potentially applied to include other parameters to address the roll stability issues and beyond.
Journal Article

Driver's Preview Strategy and its Impact on NATO Double Lane Change Maneuver

2011-04-12
2011-01-0980
In this study, a closed-loop driver-vehicle system model is established with ADAMS/CAR. A double lane change maneuver path boundary is setup based on NATO AVTP 03-160W requirement. Multiple choices of driver preview path are derived from optimization of the closed-loop driver-vehicle-road system, where the objective is to successfully pass the double lane change maneuver at a given forward speed without violating the boundary. With the multiple choices of preview path, the vehicle dynamic responses, such as tire patch load, vehicle lateral acceleration, yaw velocity, steering wheel angle and roll angle, will vary associated with each driver's preview path. The relationship between the path clearance and vehicle dynamic responses as well as the forward speeds is further investigated. Finally a methodology to predict the maximum forward speed to successfully pass double lane change is proposed.
Journal Article

Impact of Driver's Steer Control on Truck-Trailer Combination when Negotiating NATO Double Lane Change Maneuver

2013-04-08
2013-01-0404
In this study, a closed-loop driver-truck-trailer system model is established with ADAMS/Car. A double lane change maneuver (DLCM) path boundary is set up based on the NATO AVTP 03-160W requirement. The best driver preview path at a given speed to pass the DLCM is derived from optimization of the closed-loop driver-vehicle-road system, where the objective is to successfully pass the DLCM at the given forward speed. This must be done without violating the maneuver boundary, lifting any tires off the ground, as well as staying within the Driver's steering effort limit. Depending upon the Driver's control strategy, which is reflected by the formulation of the optimal objective, the dynamic responses of the truck-trailer combination will vary. Two extreme conditions are discussed in this study: full and no consideration of trailer, respectively, when negotiating the DLCM.
Technical Paper

Determination of Magic Formula Tyre Model Parameters Using Homotopy Optimization Approach

2020-04-14
2020-01-0763
Tyre behavior plays an important role in vehicle dynamics simulation. The Magic Formula Tyre Model is a semi-empirical tyre model which describes tyre behavior quite accurately in the handling simulation. The Magic Formula Tyre Model needs a set of parameters to describe the tyre properties; the determination of these parameters is nontrivial task due to its nonlinear nature and the presence of a large number of coefficients. In this paper, the homotopy algorithm is applied to the parameter identification of Magic Formula tyre model. A morphing parameter is introduced to correct the optimization process; as a result, the solution is directed converging to the global optimal solution, avoiding the local convergence. The method uses different continuation methods to globally optimize the parameters, which ensures that the prediction of the Magic Formula model can be very close to the test data at all stages of the optimization process.
Technical Paper

The Effect of Friction on Ride Comfort Simulation and Suspension Optimization

2020-04-14
2020-01-0765
The design of suspension affects the vehicle dynamics such as ride comfort and handling stability. Nonlinear characteristics and friction are important characteristics of suspension system, and the influence on vehicle dynamic performance cannot be ignored. Based on the seven-degree-of-freedom vehicle vibration nonlinear model with friction, the vibration response process of the vehicle and the influence of suspension friction on vehicle ride comfort and suspension action process were studied. The results show that friction will significantly affects the simulation of ride comfort and coincide with the function of the shock absorber. The suspension shock absorbers of vehicles were optimized with and without suspension friction. The results showed that the suspension tended to choose softer shock absorbers when there was friction. However, both of the two optimizations are able to improve the ride comfort of vehicles, and the simulation results were similar.
Journal Article

Optimization of Suspension Elastomeric Bushing Compliance Under Constraints of Handling, Ride and Durability

2010-04-12
2010-01-0721
Elastomeric bushings are widely used in the passenger cars to make the cars have an ideal vehicle Noise, Vibration and Harshness (NVH) performance. However, elastomeric bushings also influence on the vehicle handling, ride and the durability performance of each component in the vehicle suspension system. It is relatively easy and cost effective to change the compliance of the bushing components compared with other method because they are made of elastomeric materials. The design of an elastomeric bushing is really a big challenge. One of the main difficulties comes from the different target compliance is wanted according to the handling, ride and durability demand at each different orientation (indicated by X Y Z) of the bushing. In this paper the following procedure was used for optimization of suspension elastomeric bushing compliance. Firstly, a detailed multi-body model was built including the nonlinear bushing effects and lower control arm flexibility.
Technical Paper

Shock Absorber Force and Velocity Sensitivity to Its Damping Characteristics

2007-04-16
2007-01-1349
In this study, a full vehicle with durability tire model established with ADAMS is applied to simulate the dynamic behavior of the vehicle under severe rough road proving ground events, where the shock force-velocity characteristics are modeled as nonlinear curves and multi-stage representations, respectively. The shock forces and velocities at each corner are resolved and through full factorial DOE, the shock forces and velocities response surface models are established to analyze the sensitivities of shock force and velocity to the shock damping characteristics.
X