Refine Your Search

Topic

Search Results

Journal Article

Electro-Thermal Modeling of a Lithium-ion Battery System

2010-10-25
2010-01-2204
Lithium-ion (Li-ion) batteries are becoming widely used high-energy sources and a replacement of the Nickel Metal Hydride batteries in electric vehicles (EV), hybrid electric vehicles (HEV) and plug-in hybrid electric vehicles (PHEV). Because of their light weight and high energy density, Li-ion cells can significantly reduce the weight and volume of the battery packs for EVs, HEVs and PHEVs. Some materials in the Li-ion cells have low thermal stabilities and they may become thermally unstable when their working temperature becomes higher than the upper limit of allowed operating temperature range. Thus, the cell working temperature has a significant impact on the life of Li-ion batteries. A proper control of the cell working temperature is crucial to the safety of the battery system and improving the battery life. This paper outlines an approach for the thermal analysis of Li-ion battery cells and modules.
Journal Article

Characteristics of Soot Deposits in EGR Coolers

2009-11-02
2009-01-2671
Characteristics of soot deposits in the EGR cooler were studied, on basis of which a comprehensive model for soot particle depositions was developed. It was found that the soot deposit may be divided into three characteristic layers: a quasi-crystal base layer formed by nano-particles, an intermediate layer of denser packing of soot particles with meso pores, and a highly porous top layer formed by mechanical interlocking of soot particles. The cooler performance is affected significantly by the top layer of the deposit. Because of their weak contact energy, particles in the top layer and intermediate layers may be removed by the shear force under high EGR flows. The contact energy for the particles in the base layer is much stronger than that in the surface and intermediate layers. The base layer may be removed only with physicochemical methods.
Journal Article

Waste Heat Recovery Concept to Reduce Fuel Consumption and Heat Rejection from a Diesel Engine

2010-10-05
2010-01-1928
Fuel economy is critical for heavy-duty line haul applications. As fuel prices rise and impending fuel economy regulations are implemented, new ways to improve heavy-vehicle fuel economy will be in high demand. AVL Powertrain Engineering has undertaken a research and development project to demonstrate the feasibility of a Rankine Cycle Waste Heat Recovery (WHR) system. The goals of the project were to reduce the overall engine heat rejection, specific emissions and fuel consumption (CO₂ emissions) of heavy-duty diesel engines by converting heat that is typically wasted to the exhaust stack and through the EGR cooler to useable mechanical energy. A detailed thermodynamic analysis was conducted which laid the groundwork for working fluid selection and proper sizing of the WHR components. Based on the system specifications, a prototype WHR system was designed and built. The performance of the system was evaluated on a 10.8-liter heavy-duty on-highway diesel engine.
Journal Article

A Semi-Empirical Model for Predicting Pressure Drops of Fouled EGR Coolers

2010-10-05
2010-01-1948
The performance of an EGR cooler is influenced significantly by particulate fouling in the cooler. As a result of fouling, a highly porous soot deposit layer is formed in the EGR cooler. This deposit layer not only causes a decrease in the cooler effectiveness but also an increase in the EGR pressure drop over the cooler. Increasing the EGR cooler pressure drop reduces the driving force for the EGR flow under a given differential pressure across the engine. Thus, the EGR cooler fouling has a big impact on the control of the engine-out NO emissions. In this paper, a semi-empirical model is developed for predicting pressure drops of fouled EGR coolers. Based on this model and the particulate fouling model developed previously by the author, the process is analyzed for the pressure drop increase with building up of the soot deposit in an EGR cooler.
Journal Article

An Experimental Investigation on Low Speed Pre-Ignition in a Highly Boosted Gasoline Direct Injection Engine

2015-04-14
2015-01-0758
The biggest challenge in developing Turbocharged Gasoline Direct Injection (TGDI) engines may be the abnormal combustion phenomenon occurring at low speeds and high loads, known as low-speed pre-ignition (LSPI). LSPI can trigger severe engine knocks with intensities much greater than those of spark knocks and thus characterized as super knocks. In this study, behavior and patterns of LSPI were investigated experimentally with a highly-boosted 1.5L TGDI engine. It was found that LSPI could occur as an isolated event, a couple of events in sequence, or a trail of events. Although occurring randomly among the engine cylinders, LSPI took place frequently when the engine was operated at low speeds and high loads in the zone where scavenging was employed for boosting engine torques at low speeds, typically < 2500 rpm.
Technical Paper

Failure Prediction and Design Optimization of Exhaust Manifold based on CFD and FEM Analysis

2020-04-14
2020-01-1166
A thermo-mechanical fatigue analysis was conducted based on a coupled Finite Element Analysis (FEA) - Computational Fluid Dynamics (CFD) method on the crack failure of the exhaust manifold for an inline 4-cylinder turbo-charged diesel engine under the durability test. In the this analysis, the temperature-dependent material properties were obtained from measurements and the model was calibrated with comparison of the predicted exhaust manifold temperatures with the on-engine measurements under the same engine load condition. Temperature and stress/strain distributions in the exhaust manifold were predicted with the calibrated model. Analysis results showed that the cracks took place at locations with high plastic deformations, suggesting that the cause of the failure be thermo-mechanical fatigue (TMF). Using the equivalent plastic strain (PEEQ) as the indicator for thermal mechanical fatigue, three exhaust manifold design revisions were carried out by CAE analysis.
Technical Paper

Optimization of Piston-Ring System for Reducing Lube Oil Consumption by CAE Approach

2020-04-14
2020-01-1339
A CAE-based optimization method is developed for Lube Oil Consumption (LOC) analysis of the piston-ring system. With accurate thermodynamic boundary conditions from 1D engine combustion simulation, piston motion, dynamics of piston ring, and characteristics of oil consumption are simulated using AVL Piston&Ring. The model is validated by comparing with available test data. Good match is achieved. The model is then applied to a diesel engine. The root cause of excessive LOC of the engine has been identified through CAE. The improved understanding has been applied to optimize the piston and piston ring. Engine dyno test, 1200-hour engine durability test, and 45000-kilometer vehicle test have been conducted to validate the optimized design. The experiment results are in good agreement with CAE predictions, and the oil consumption has been improved over the original design.
Journal Article

Impact of Fuel Injection on Dilution of Engine Crankcase Oil for Turbocharged Gasoline Direct-Injection Engines

2015-04-14
2015-01-0967
Turbocharged gasoline direct injection (TGDI) engines often have a flat torque curve with the maximum torque covering a wide range of engine speeds. Increasing the high-speed-end torque for a TGDI engine provides better acceleration performance to the vehicle powered by the engine. However, it also requires more fuel deliveries and thus longer injection durations at high engine speeds, for which the multiple fuel injections per cycle may not be possible. In this study, results are reported of an experimental investigation of impact of fuel injection on dilution of the crankcase oil for a highly-boosted TGDI engine. It was found in the tests that the high-speed-end torque for the TGDI engine had a significant influence on fuel dilution: longer injection durations resulted in impingement of large liquid fuel drops on the piston top, leading to a considerable level of fuel dilution.
Journal Article

Thermal Characterization of a Li-ion Battery Module Cooled through Aluminum Heat-Sink Plates

2011-09-13
2011-01-2248
The temperature distribution is studied theoretically in a battery module stacked with 12 high-power Li-ion pouch cells. The module is cooled indirectly with ambient air through aluminum heat-sink plates or cooling plates sandwiched between each pair of cells in the module. Each of the cooling plates has an extended cooling fin exposed in the cooling air channel. The cell temperatures can be controlled by changing the air temperature and/or the heat transfer coefficient on the cooling fin surfaces by regulating the air flow rate. It is found that due to the high thermal conductivity and thermal diffusivity of the cooling plates, heat transfer of the cooling plate governs the cell temperature distribution by spreading the cell heat over the entire cell surface. Influence of thermal from the cooling fins is also simulated.
Journal Article

An Analysis of a Lithium-ion Battery System with Indirect Air Cooling and Warm-Up

2011-09-13
2011-01-2249
Ideal operation temperatures for Li-ion batteries fall in a narrow range from 20°C to 40°C. If the cell operation temperatures are too high, active materials in the cells may become thermally unstable. If the temperatures are too low, the resistance to lithium-ion transport in the cells may become very high, limiting the electrochemical reactions. Good battery thermal management is crucial to both the battery performance and life. Characteristics of various battery thermal management systems are reviewed. Analyses show that the advantages of direct and indirect air cooling systems are their simplicity and capability of cooling the cells in a battery pack at ambient temperatures up to 40°C. However, the disadvantages are their poor control of the cell-to-cell differential temperatures in the pack and their capability to dissipate high cell generations.
Journal Article

Thermal Analysis of a Li-ion Battery System with Indirect Liquid Cooling Using Finite Element Analysis Approach

2012-04-16
2012-01-0331
The performance and life of Li-ion battery packs for electric vehicle (EV), hybrid electrical vehicle (HEV), and plug-in hybrid electrical vehicle (PHEV) applications are influenced significantly by battery operation temperatures. Thermal management of a battery pack is one of the main factors to be considered in the pack design, especially for those with indirect air or indirect liquid cooling since the cooling medium is not in contact with the battery cells. In this paper, thermal behavior of Li-ion pouch cells in a battery system for PHEV applications is studied. The battery system is cooled indirectly with liquid through aluminum cooling fins in contact with each cell and a liquid cooled cold plate for each module in the battery pack. The aluminum cooling fins function as a thermal bridge between the cells and the cold plate. Cell temperature distributions are simulated using a finite element analysis approach under cell utilizations corresponding to PHEV applications.
Journal Article

Thermal Analysis of a High-Power Lithium-Ion Battery System with Indirect Air Cooling

2012-04-16
2012-01-0333
Thermal behavior of a lithium-ion (Li-ion) battery module for hybrid electrical vehicle (HEV) applications is analyzed in this study. The module is stacked with 12 high-power pouch Li-ion battery cells. The cells are cooled indirectly with air through aluminum fins sandwiched between each two cells in the module, and each of the cooling fins has an extended cooling surface exposed in the cooling air flow channel. The cell temperatures are analyzed using a quasi-dimensional model under both the transient module load in a user-defined cycle for the battery system utilizations and an equivalent continuous load in the cycle. The cell thermal behavior is evaluated with the volume averaged cell temperature and the cell heat transfer is characterized with resistances for all thermal links in the heat transfer path from the cell to the cooling air. Simulations results are compared with measurements. Good agreement is observed between the simulated and measured cell temperatures.
Journal Article

A Thermodynamic Model for a Single Cylinder Engine with Its Intake/Exhaust Systems Simulating a Turbo-Charged V8 Diesel Engine

2011-04-12
2011-01-1149
In this paper, a thermodynamic model is discussed for a single cylinder diesel engine with its intake and exhaust systems simulating a turbo-charged V8 diesel engine. Following criteria are used in determination of the gas exchange systems of the single cylinder engine (SCE): 1) the level of pressure fluctuations in the intake and exhaust systems should be within the lower and upper bounds of those simulated by the thermodynamic model for the V8 engine and patterns of the pressure waves should be similar; 2) the intake and exhaust flows should be reasonably close to those of the V8 engine; 3) the cylinder pressures during the combustion and gas exchange should be reasonably close to those of the V8 engine under the same conditions for the valve timing, fuel injection, rate of heat release and in-cylinder heat transfer. The thermodynamic model for the SCE is developed using the 1D engine thermodynamic simulation tool AVL BOOST.
Journal Article

Characterizing Thermal Runaway of Lithium-ion Cells in a Battery System Using Finite Element Analysis Approach

2013-04-08
2013-01-1534
In this study, thermal runaway of a 3-cell Li-ion battery module is analyzed using a 3D finite-element-analysis (FEA) method. The module is stacked with three 70Ah lithium-nickel-manganese-cobalt (NMC) pouch cells and indirectly cooled with a liquid-cooled cold plate. Thermal runaway of the module is assumed to be triggered by the instantaneous increase of the middle cell temperature due to an abusive condition. The self-heating rate for the runaway cell is modeled on the basis of Accelerating Rate Calorimetry (ARC) test data. Thermal runaway of the battery module is simulated with and without cooling from the cold plate; with the latter representing a failed cooling system. Simulation results reveal that a minimum of 165°C for the middle cell is needed to trigger thermal runaway of the 3-cell module for cases with and without cold plate cooling.
Technical Paper

Fuel Injection Strategy for Reducing NOx Emissions from Heavy-Duty Diesel Engines Fueled with DME

2006-10-16
2006-01-3324
A new fuel injection strategy is proposed for DME engines. Under this strategy, a pre-injection up to 40% demand is conducted after intake valves closing. Due to high volatility of DME, a lean homogeneous mixture can be formed during the compression stroke. Near TDC, a pilot injection is conducted. Combined fuel mass for the pre-injection and pilot injection is under the lean combustion limit of DME. Thus, the mixture is enriched and combustion can take place only in the neighborhood of sprays of the pilot injection. The main injection is conducted after TDC. Because only about half of the demand needs to be injected and DME evaporates almost immediately, combustion duration for the main injection plus the unburnt fuel in the cylinder should not be long because a large portion of the fuel has been premixed with air. With a high EGR rate and proper timing for the main injection, low temperature combustion could be realized.
Journal Article

Design of Direct and Indirect Liquid Cooling Systems for High- Capacity, High-Power Lithium-Ion Battery Packs

2012-09-24
2012-01-2017
Battery packs for plug-in hybrid electrical vehicle (PHEV) applications can be characterized as high-capacity and high-power packs. For PHEV battery packs, their power and electrical-energy capacities are determined by the range of the electrical-energy-driven operation and the required vehicle drive power. PHEV packs often employ high-power lithium-ion (Li-ion) pouch cells with large cell capacity in order to achieve high packing efficiency. Lithium-ion battery packs for PHEV applications generally have a 96SnP configuration, where S is for cells in series, P is for cells in parallel, and n = 1, 2 or 3. Two PHEV battery packs with 355V nominal voltage and 25-kWh nominal energy capacity are studied. The first pack is assembled with 96 70Ah high-power Li-ion pouch cells in 96S1P configuration. The second pack is assembled with 192 35Ah high-power Li-ion pouch cells in 96S2P configuration.
Technical Paper

Waste Heat Recovery of Heavy-Duty Diesel Engines by Organic Rankine Cycle Part I: Hybrid Energy System of Diesel and Rankine Engines

2007-04-16
2007-01-0537
Waste heat from a heavy-duty truck diesel engine is analyzed employing the first and second law of thermodynamics. A hybrid energy system is proposed, with the diesel cycle being hybridized with an organic Rankine cycle for waste heat recovery (ORC-WHR). The charge air cooler and EGR cooler(s) are integrated in the ORC loop as pre-heaters and the ORC working fluid serves as the coolant for these coolers. A supercritical reciprocating Rankine engine is proposed, which avoids using the high-cost evaporator and is easier for the system packaging. It is demonstrated in a case study that up to 20 % of waste heat from the heavy-duty diesel engine may be recovered by the supercritical ORC-WHR system, making the efficiency for the hybrid energy system be ≥ 50%. Discussion on working fluids for the WHR-ORC system is covered in Part II of this paper.
Technical Paper

Waste Heat Recovery of Heavy-Duty Diesel Engines by Organic Rankine Cycle Part II: Working Fluids for WHR-ORC

2007-04-16
2007-01-0543
In Part I of this paper, the organic Rankine cycle for waste heat recovery (ORC-WHR) from the heavy-duty diesel truck engines was discussed. This work is Part II of the paper. The efficiency of the ORC-WHR system varies considerably with thermodynamic properties of the working fluid. In this work, characteristics of candidate working fluids are discussed on the basis of the thermodynamic theory. The discussion covers inorganic and organic fluids for both pure fluids and binary-mixture fluids. On the basis of the characteristics of the working fluids, the thermal efficiency for the ORC-WHR system is analyzed. Discussions and conclusions of this paper are helpful in selecting proper working fluids for the ORC-WHR system and determining a proper temperature range for system operations.
Technical Paper

A Thermal Energy Operated Heating/Cooling System for Buses

2010-04-12
2010-01-0804
The passenger cabin heating and cooling has a considerable impact on the fuel economy for buses, especially during the waiting period. This problem becomes more significant for the hybrid buses for which the impact of the auxiliary load on the fuel economy is almost twice that on the conventional buses. A second-law analysis conducted in this study indicates that a heat-driven AC system has higher energy utilization efficiency than the conventional AC system. On the basis of this analysis, a concept waste-heat-driven absorptive aqua-ammonia heat pump system is proposed and analyzed. Results of the analysis show that the heat-driven system can reduce the engine auxiliary load significantly because it eliminates the conventional AC compressor. In the AC mode, its energy utilization efficiency can be up to 50%. In the heating mode, the effective efficiency for heating can be up to 100%.
Technical Paper

Improving Fuel Economy for HD Diesel Engines with WHR Rankine Cycle Driven by EGR Cooler Heat Rejection

2009-10-06
2009-01-2913
The fuel saving benefit is analyzed for a class-8 truck diesel engine equipped with a WHR system, which recovers the waste heat from the EGR. With this EGR-WHR system, the composite fuel savings over the ESC 13-mode test is up to 5%. The fuel economy benefit can be further improved if the charge air cooling is also integrated in the Rankine cycle loop. The influence of working fluid properties on the WHR efficiency is studied by operating the Rankine cycle with two different working fluids, R245fa and ethanol. The two working fluids are compared in the temperature-entropy and enthalpy-entropy diagrams for both subcritical and supercritical cycles. For R245fa, the subcritical cycle shows advantages over the supercritical cycle. For ethanol, the supercritical cycle has better performance than the subcritical cycle. The comparison indicates that ethanol can be an alternative for R245fa.
X