Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Design Analysis of High Power Density Additively Manufactured Induction Motor

2016-09-20
2016-01-2061
Induction machines (IM) are considered work horse for industrial applications due to their rugged, reliable and inexpensive nature; however, their low power density restricts their use in volume and weight limited environments such as an aerospace, traction and propulsion applications. Given recent advancements in additive manufacturing technologies, this paper presents opportunity to improve power density of induction machines by taking advantage of higher slot fill factor (SFF) (defined as ratio of bare copper area to slot area) is explored. Increase in SFF is achieved by deposition of copper in much more compact way than conventional manufacturing methods of winding in electrical machines. Thus a design tradeoff study for an induction motor with improved SFF is essential to identify and highlight the potentials of IM for high power density applications and is elaborated in this paper.
Journal Article

Herschel Heaters Control Modeling and Correlation

2009-07-12
2009-01-2348
Herschel and Planck satellites have recently undergone the thermal vacuum and thermal balance (TVTB) test which was performed in the ESA-ESTEC Large Space Simulator for Herschel and in Centre Spatial de Liège (CSL) for Planck. One of the specific targets of the Herschel test was the verification of the thermal stability of two HIFI units (required to be better than 3.10−4 °C/s) and of the Star Tracker mounting plate (required to be better than 2.5.10−3 °C/s), with particular attention on the performance of the relevant feedback control loops. Control system design and model predictions are presented and compared against the test results. Further discussion on the requirement verification is provided.
Journal Article

Thermal Design of the Mercury Transfer Module

2009-07-12
2009-01-2349
This paper will describe the Thermal Control Subsystem of the Mercury Transfer Module of the BepiColombo mission. BepiColombo is an Interdisciplinary Cornerstone Mission to the planet Mercury, in collaboration between ESA and ISAS/JAXA of Japan, due for launch in 2014. The mission will be undertaken by a stack of three distinct spacecraft modules, including two scientific orbiters, the Mercury Planetary Orbiter (MPO) and the Mercury Magnetospheric Orbiter (MMO). The third entity, the subject of this paper, is the Mercury Transfer Module (MTM).
Journal Article

Development Testing of a High Differential Pressure (HDP) Water Electrolysis Cell Stack for the High Pressure Oxygen Generating Assembly (HPOGA)

2009-07-12
2009-01-2346
The International Space Station (ISS) requires advanced life support to continue its mission as a permanently-manned space laboratory and to reduce logistic resupply requirements as the Space Shuttle retires from service. Additionally, as humans reach to explore the moon and Mars, advanced vehicles and extraterrestrial bases will rely on life support systems that feature in-situ resource utilization to minimize launch weight and enhance mission capability. An obvious goal is the development of advanced systems that meet the requirements of both mission scenarios to reduce development costs by deploying common modules. A high pressure oxygen generating assembly (HPOGA) utilizing a high differential pressure (HDP) water electrolysis cell stack can provide a recharge capability for the high pressure oxygen storage tanks on-board the ISS independently of the Space Shuttle as well as offer a pathway for advanced life support equipment for future manned space exploration missions.
Journal Article

Comparative Configurations for Lunar Lander Habitation Volumes: 2005-2008

2009-07-12
2009-01-2366
This paper presents an overview of the progression of the contemplated candidate volumes for the Lunar Lander since the beginning of the Vision for Space Exploration in 2004. These sets of data encompass the 2005 Exploration Systems Architecture Study (ESAS), the 2006 Request for Information on the Constellation Lunar Lander, the 2007 Lander Design Analysis Cycle −1 (LDAC-1) and the 2008 Lunar Lander Development Study (LLDS). This data derives from Northrop Grumman Corporation analyses and design research. A key focus of this investigation is how well the lunar lander supports crew productivity.
Journal Article

Status of Developing a Near Real-Time Capability for Estimating Space Radiation Exposure Using EMMREM

2009-07-12
2009-01-2340
The central objective of the Earth-Moon-Mars Radiation Environment Module (EMMREM) project is to develop and validate a numerical module for completely characterizing time-dependent radiation exposure in the Earth-Moon-Mars and Interplanetary space environments. An important step in the process of building this system is the development of the interfaces between EMMREM's internal components, many of which have existed previously as stand-alone simulation codes. This work specifically discusses the development and implementation of the interface, primarily using the Perl scripting language, between two input data set generators, one of which describes the space radiation environment at some desired location, and a space radiation transport and shielding code, BRYNTRN, that provides estimates at fairly short time intervals of dose and dose equivalent behind shielding.
Journal Article

Testing of a Plastic Melt Waste Compactor Designed for Human Space Exploration Missions

2009-07-12
2009-01-2363
Significant progress has been made at NASA Ames Research Center in the development of a heat melt compaction device called the Plastic Melt Waste Compactor (PMWC). The PMWC was designed to process wet and dry wastes generated on human space exploration missions. The wastes have a plastic content typically greater than twenty percent. The PMWC removes the water from the waste, reduces the volume, and encapsulates it by melting the plastic constituent of the waste. The PMWC is capable of large volume reductions. The final product is compacted waste disk that is easy to manage and requires minimal crew handling. This paper describes the results of tests conducted using the PMWC with a wet and dry waste composite that was representative of the waste types expected to be encountered on long duration human space exploration missions.
Journal Article

Disturbance of Electronics in Low-Earth Orbits by High Energy Electron Plasmas

2009-07-12
2009-01-2339
Electrical disturbances caused by charging of cables in spacecraft can impair electrical systems for long periods of time. The charging originates primarily from electrons trapped in the radiation belts of the earth. The model Space Electrons Electromagnetic Effects (SEEE) is applied in computing the transient charge and electric fields in cables on spacecraft at low to middle earth altitudes. The analysis indicated that fields exceeding dielectric breakdown strengths of common dielectric materials are possible in intense magnetic storms for systems with inadequate shielding. SEEE also computes the minimal shielding needed to keep the electric fields below that for dielectric breakdown.
Journal Article

Analyses of Several Space Radiation-Mitigating Materials: Computational and Experimental Results

2009-07-12
2009-01-2338
Long-term exposure to the space radiation environment poses deleterious effects to both humans and space systems. The major sources of the radiation effects come from high energy galactic cosmic radiation and solar proton events. In this paper we investigate the radiation-mitigation properties of several shielding materials for possible use in spacecraft design, surface habitats, surface rovers, spacesuits, and temporary shelters. A discussion of the space radiation environment is presented in detail. Parametric radiation shielding analyses are presented using the NASA HZETRN 2005 code and are compared with ground-based experimental test results using the Loma Linda University Proton Therapy facility.
Journal Article

Using Designing for Human Variability to optimize Aircraft eat Layout

2009-06-09
2009-01-2310
Integrating the seemingly divergent objectives of aircraft seat configuration is a difficult task. Aircraft manufacturers look to design seats to maximize customer satisfaction and in-flight safety, but these objectives can conflict with the profit motive of airline companies. In order to boost revenue by increasing the number of passengers per aircraft, airline companies may increase seat height and decrease seat pitch. This results in disaccommodation of a greater percentage of the passenger population and is a reason for rising customer dissatisfaction. This paper describes an effort to bridge this gap by incorporating digital human models, layout optimization, and a profit-maximizing constraint into the aircraft seat design problem. A simplified aircraft seat design experiment is conceptualized and its results are extrapolated to an airline passenger population.
Journal Article

Development of the Second Generation International Space Station (ISS) Total Organic Carbon Analyzer (TOCA)

2009-07-12
2009-01-2393
The second generation International Space Station (ISS) Total Organic Carbon Analyzer's (TOCA) function is to monitor concentrations of Total Organic Carbon (TOC) in ISS water samples. TOC is one measurement that provides a general indication of overall water quality by indicating the potential presence of hazardous chemicals. The data generated from the TOCA is used as a hazard control to assess the quality of the reclaimed and stored water supplies on-orbit and their suitability for crew consumption. This paper details the unique ISS Program requirements, the design of the ISS TOCA, and a brief description of the on-orbit concept-of-operations. The TOCA schematic will be discussed in detail along with specific information regarding key components.
Journal Article

Solar Cycle and Seasonal Variability of the Martian Thermosphere-Ionosphere and Associated Impacts upon Atmospheric Escape

2009-07-12
2009-01-2396
A growing body of evidence supports an ancient Mars having a milder, wetter climate, suggesting that its atmosphere was once more substantial than it is today. The fate of the lost atmosphere and water is a major unanswered question. Is the “lost” water sequestered in the crust at all latitudes, or did much of it escape to space? While available measurements and theoretical studies suggest that a number of atmospheric escape processes are at work today, little is known about their efficacy, including temporal variations driven by the solar cycle and Mars seasons. Selected 3-D simulations are presented and illustrate the coupling between the thermosphere-ionosphere system and the exosphere leading to predictions of the oxygen corona and hot oxygen escape (a major component of atmospheric loss for present day Mars).
Journal Article

Thermal Considerations for Meeting 20°C and Stringent Temperature Gradient Requirements of IXO SXT Mirror Modules

2009-07-12
2009-01-2391
The Soft X-Ray Telescope (SXT) is an instrument on the International X-Ray Observatory (IXO). Its flight mirror assembly (FMA) has a single mirror configuration that includes a 3.3 m diameter and 0.93 m tall mirror assembly. It consists of 24 outer modules, 24 middle modules and 12 inner modules. Each module includes more than 200 mirror segments. There are a total of nearly 14, 000 mirror segments. The operating temperature requirement of the SXT FMA is 20°C. The spatial temperature gradient requirement between the FMA modules is ±1°C or smaller. The spatial temperature gradient requirement within a module is ±0.5°C. This paper presents thermal design considerations to meet these stringent thermal requirements.
Journal Article

Effect of Illumination Angle on the Performance of Dusted Thermal Control Surfaces in a Simulated Lunar Environment

2009-07-12
2009-01-2420
JSC-1A lunar simulant has been applied to AZ93 and AgFEP thermal control surfaces on aluminum substrates in a simulated lunar environment. The temperature of these surfaces was monitored as they were heated with a solar simulator using varying angles of incidence and cooled in a 30 K coldbox. Thermal modeling was used to determine the solar absorptivity (a) and infrared emissivity (e) of the thermal control surfaces in both their clean and dusted states. It was found that even a sub-monolayer of dust can significantly raise the α of either type of surface. A full monolayer can increase the α/ε ratio by a factor of 3–4 over a clean surface. Little angular dependence of the α of pristine thermal control surfaces for both AZ93 and AgFEP was observed, at least until 30° from the surface. The dusted surfaces showed the most angular dependence of α when the incidence angle was in the range of 25° to 35°.
Journal Article

Development of an In-line Urine Monitoring System for the International Space Station

2009-07-12
2009-01-2400
Exposure to microgravity during space flight causes bone loss when calcium and other metabolic by-products are excreted in urine voids. Frequent and accurate measurement of urine void volume and constituents is thus essential in determining crew bone loss and the effectiveness of the countermeasures that are taken to minimize this loss. Earlier space shuttle Urine Monitoring System (UMS) technology was unable to accurately measure urine void volumes due to the cross-contamination that took place between users, as well as to fluid system instabilities. Crew urine voids are currently collected manually in a flexible plastic bag that contains a known tracer quantity. A crew member must completely mix the contents of this bag before withdrawing a representative syringe sample for later ground analysis. The existing bag system accuracy is therefore highly dependent on mixing technique.
Journal Article

Hollow Fiber Space Suit Water Membrane Evaporator Development for Lunar Missions

2009-07-12
2009-01-2371
The Space Suit Water Membrane Evaporator (SWME) is a baseline heat rejection technology that was selected to develop the Constellation Program lunar suit. The Hollow Fiber (HoFi) SWME is being considered for service in the Constellation Space Suit Element Portable Life Support Subsystem to provide cooling to the thermal loop via water evaporation to the vacuum of space. Previous work [1] described the test methodology and planning that are entailed in comparing the test performance of three commercially available HoFi materials as alternatives to the sheet membrane prototype for SWME: (1) porous hydrophobic polypropylene, (2) porous hydrophobic polysulfone, and (3) ion exchange through nonporous hydrophilic-modified Nafion®.
Journal Article

Results of the Particulate Contamination Control Trade Study for Space Suit Life Support Development

2009-07-12
2009-01-2373
As the United States makes plans to return astronauts to the moon and eventually send them on to Mars, designing the most effective, efficient, and robust spacesuit life support system that will operate successfully in dusty environments is vital. Some knowledge has been acquired regarding the contaminants and level of infiltration that can be expected from lunar and Mars dust, however, risk mitigation strategies and filtration designs that will prevent contamination within a spacesuit life support system are yet undefined. A trade study was therefore initiated to identify and address these concerns, and to develop new requirements for the Constellation spacesuit element Portable Life Support System. This trade study investigated historical methods of controlling particulate contamination in spacesuits and space vehicles, and evaluated the possibility of using commercial technologies for this application. The trade study also examined potential filtration designs.
Journal Article

International Space Station United States Operational Segment Crew Quarters On-orbit vs. Design Performance Comparison

2009-07-12
2009-01-2367
The International Space Station (ISS) United States Operational Segment (USOS) received the first two permanent ISS Crew Quarters (CQ) on Utility Logistics Flight Two (ULF2) in November 2008. As many as four CQs can be installed in the Node 2 element to increase the ISS crew member size to six. The CQs provide crew members with private space that has enhanced acoustic noise mitigation, integrated radiation-reduction material, communication equipment, redundant electrical systems, and redundant caution and warning systems. The rack-sized CQ system has multiple crew member restraints, adjustable lighting, controllable ventilation, and interfaces that allow each crew member to personalize his or her CQ workspace. The deployment and initial operational checkout during integration of the ISS CQ to Node 2 is described in this paper.
Journal Article

Minimum Functionality Lunar Habitat Element Design: Requirements and Definition of an Initial Human Establishment on the Moon

2009-07-12
2009-01-2369
This paper summarizes the activities of the University of Maryland Space Systems Laboratory in performing a design study for a minimum functionality lunar habitat element for NASA's Exploration Systems Mission Directorate. By creating and deploying a survey to personnel experienced in Earth analogues, primarily shipboard and Antarctic habitats, a list of critical habitat functions was established, along with their relative importance and their impact on systems design/implementation. Based on a review of relevant past literature and the survey results, four habitat concepts were developed, focused on interior space layout and preliminary systems sizing. Those concepts were then evaluated for habitability through virtual reality (VR) techniques and merged into a single design. Trade studies were conducted on habitat systems, and the final design was synthesized based on all of the results.
X