Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Development and Testing of an Innovative Oil Condition Sensor

2009-04-20
2009-01-1466
In order to detect degradation of engine oil lubricant, bench testing along with a number of diesel-powered Ford trucks were instruments and tested. The purpose of the bench testing was primarily to determine performance aspects such as repeatability, hysteresis effects and so on. Vehicle testing was conducted by designing and installing a separate oil reservoir along with a circulation system which was mounted in the vicinity of the oil pan. An innovative oil sensor was directly installed on the reservoir which can measure five (5) independent oil parameters (viscosity, density, permittivity, conductance, temperature). In addition, the concept is capable of detecting the oil level continuously during normal engine operation. The sensing system consists of an ultrasonic transducer for the oil level detection as well as a Tuning Fork mechanical resonator for the oil condition measurement.
Journal Article

Analysis of Compromising Degree of an Internal Combustion Engine Using Biodiesel

2009-04-20
2009-01-0895
This work intends to present a study about the application of a standard methodology for the evaluation of the mechanical components compromise as result of the use of biodiesel, based on the lubricating oil analyses. The fuel oil that will be analyzed is produced in PUCRS' Faculty of Chemistry. As we know, the physical-chemical analysis of lubricating oils can indicate a series of parameters that allow valuing the quality and the compromising degree of the mechanical engine components. The results of these analyses will be based on tests in an Electronic Microscopy. This type of analysis will allow us to determine the quality of the lubricating oil, degradation and contamination with metal materials (mechanical compromising). The work presupposes the functioning of Diesel engine cycle with several proportions of biodiesel (B2, B5, B10, B20 and B100).
Journal Article

Development and Advances of a V-Flow FC Stack for FCX Clarity

2009-04-20
2009-01-1010
Honda has succeeded in developing the new fuel cell (FC) vehicle designed into a dynamic, full-cabin sedan, the FCX Clarity, originating from the new V Flow FC platform. The key technology is V Flow FC Stack, featuring V Flow cell structure in which the fuel gases run from top to bottom vertically through the wave flow-channels. According to this unique structure, the fuel cell stack sits longitudinally along the center tunnel, and a Vertebral layout has emerged. The Vertebral layout results in Volume efficient package and low-floor platform. The V Flow FC stack has achieved a high output of 100kW and improved the output density with 50% by volume and 67% by mass, compared to the previous 2005 model. The V Flow cell structure utilizes gravity for water drainage and reduces the channel depth creating thinner cells. The wave-shaped vertical gas flow channel provides horizontal and more efficient coolant flow distribution allowing the reduction of the number of cooling layer.
Journal Article

Active Heat Sink for Automotive Electronics

2009-04-20
2009-01-0965
This paper reports an active heat sink (AHS) that allows high-density electronic components to operate at a stable temperature over a broad range of ambient conditions. AHS receives heat at high flux and transfers it at reduced flux to environment, coolant fluid (e.g., air or engine coolant), or structures. Temperature of the heat load can be controlled electronically. Target applications for AHS include thermal management of the new class of high-power electronics being developed for electric hybrid vehicles. AHS also enables precise control over junction temperature (and, thus, light color) of high-power light-emitting diodes (LED) used for solid-state headlights and allows for compact air-cooled heat sinks. Depending on the configuration, AHS thermal resistance can be as low as 0.1 degC/W. AHS physics, engineering design, and performance simulations are presented.
Journal Article

Hollow Fiber Space Suit Water Membrane Evaporator Development for Lunar Missions

2009-07-12
2009-01-2371
The Space Suit Water Membrane Evaporator (SWME) is a baseline heat rejection technology that was selected to develop the Constellation Program lunar suit. The Hollow Fiber (HoFi) SWME is being considered for service in the Constellation Space Suit Element Portable Life Support Subsystem to provide cooling to the thermal loop via water evaporation to the vacuum of space. Previous work [1] described the test methodology and planning that are entailed in comparing the test performance of three commercially available HoFi materials as alternatives to the sheet membrane prototype for SWME: (1) porous hydrophobic polypropylene, (2) porous hydrophobic polysulfone, and (3) ion exchange through nonporous hydrophilic-modified Nafion®.
Journal Article

Results of Multifunctional Condensing Heat Exchanger for Water Recovery Applications

2009-07-12
2009-01-2383
Humidity control within confined spaces is of great importance for current NASA environmental control systems and future exploration applications. The engineered multifunction surfaces (MFS) developed by ORBITEC is a technology that produces hydrophilic and antimicrobial surface properties on a variety of substrate materials. These properties combined with capillary geometry create the basis for a passive condensing heat exchanger (CHX) for applications in reduced gravity environments, eliminating the need for mechanical separators and particulate-based coatings. The technology may also be used to produce hydrophilic and biocidal surface properties on a range of materials for a variety of applications where bacteria and biofilms proliferate, and surface wetting is beneficial.
Journal Article

Mars Science Laboratory Mechanically Pumped Fluid Loop for Thermal Control - Design, Implementation, and Testing

2009-07-12
2009-01-2437
The Mars Science Laboratory (MSL) mission to land a large rover on Mars is being prepared for Launch in 2011. A Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) on the rover provides an electrical power of 110 W for use in the rover and the science payload. Unlike the solar arrays, MMRTG provides a constant electrical power during both day and night for all seasons (year around) and latitudes. The MMRTG dissipates about 2000 W of waste heat to produce the desired electrical power. One of the challenges for MSL Rover is the thermal management of the large amount of MMRTG waste heat. During operations on the surface of Mars this heat can be harnessed to maintain the rover and the science payload within their allowable limits during nights and winters without the use of electrical survival heaters. A mechanically pumped fluid loop heat rejection and recovery system (HRS) is used to pick up some of this waste heat and supply it to the rover and payload.
Journal Article

Development of Flax oil-based Biopolymer for Biocomposites

2009-10-06
2009-01-2869
Flax oil is the main goal of growing flaxseed. Flax oil has been used for nutrition, food, paint binder, putty, and wood finish. However, synthetic resin from flax oil has not been developed. In this paper we will develop a biopolymer derived from flax oil and the goal is to use it as a resin to produce a viable, biodegradable composite using natural fiber as reinforcement. First, the functionalization of the triglyceride group of the flax oil fatty acids with polymerizable chemical groups was studied. The triglyceride molecule of flax oil was epoxidized by the reaction of double bonds in the fatty acid with a peroxy acid (formic acid) to get epoxidized oil; the epoxidized oil was then reacted with ethylenically substituted carboxylic acid (acrylic acid) to form acrylated epoxidized flax oil. Polymer resins were prepared from flax oil by blending acrylated epoxidized flax oil with styrene and a free radical initiator.
Journal Article

Investigation into Ash Loading and Its Relationship to DPF Regeneration Method

2009-10-06
2009-01-2882
A diesel particulate filter (DPF) controls and maintains a constant pressure drop across the filter by repeating the regeneration process for PM (Particulate Matter). However, the regeneration results in ash accumulation on the DPF. Although this ash accumulation is very slow, it eventually causes increased pressure drop which affects the product life of the DPF. Metal elements in the lubricant additives in the engine oil are the source of the ash. Since ash is an oxidized substance, the amount of ash produced depends on such factors as the amount of oil consumed in the engine and the kinds of lubricant additives contained in engine oil. According to the reference literature [1-3], ash accumulates on a DPF differently depending on use of either a passive regeneration system or an active regeneration system. With the passive regeneration system, ash accumulates uniformly on the filter wall while ash accumulates near the outlet of the filter with the active regeneration system.
Journal Article

Field Evaluation of Biodiesel (B20) Use by Transit Buses

2009-10-06
2009-01-2899
The objective of this research project was to compare B20 (20% biodiesel fuel) and ultra-low-sulfur (ULSD) diesel-fueled buses in terms of fuel economy, vehicle maintenance, engine performance, component wear, and lube oil performance. We examined 15 model year (MY) 2002 Gillig 40-foot transit buses equipped with MY 2002 Cummins ISM engines. The engines met 2004 U.S. emission standards and employed exhaust gas recirculation (EGR). For 18 months, eight of these buses operated exclusively on B20 and seven operated exclusively on ULSD. The B20 and ULSD study groups operated from different depots of the St. Louis (Missouri) Metro, with bus routes matched for duty cycle parity. The B20- and ULSD-fueled buses exhibited comparable fuel economy, reliability (as measured by miles between road calls), and total maintenance costs. Engine and fuel system maintenance costs were also the same for the two groups after correcting for the higher average mileage of the B20 group.
Journal Article

Flying Test Bed Performance Testing of High-Bypass-Ratio Turbofans

2009-11-10
2009-01-3133
The commercial turbofan trend of increasing bypass ratio and decreasing fan pressure ratio has seen its latest market entry in Pratt & Whitney's PurePower™ product line, which will power regional aircraft for the Bombardier and Mitsubishi corporations, starting in 2013. The high-bypass-ratio, low-fan-pressure-ratio trend, which is aimed at diminishing noise while increasing propulsive efficiency, combines with contemporary business factors including the escalating cost of testing and limited availability of simulated altitude test sites to pose formidable challenges for engine certification and performance validation. Most fundamentally, high bypass ratio and low fan pressure ratio drive increased gross-to-net thrust ratio and decreased fan temperature rise, magnifying by a factor of two or more the sensitivity of in-flight thrust and low spool efficiency to errors of measurement and assumption, i.e., physical modeling.
Journal Article

Analysis of DPF Incombustible Materials from Volvo Trucks Using DPF-SCR-Urea With API CJ-4 and API CI-4 PLUS Oils

2009-06-15
2009-01-1781
This paper reports on a field test with 23 Volvo D12C non-exhaust gas recirculation diesel engines using the Diesel Particulate Filter (DPF), Selective Catalytic Reduction (SCR), and urea system with Ultra-Low-Sulfur-Diesel (ULSD). This combination will be used to meet the on-highway emission standards for U.S. 2010, Japan 2010, and Europe 2013. Because of future widespread use of DPF-SCR, this study reports on our field experience with this system, and focuses on enhancing our understanding of the incombustible materials which are collected in the DPF with API CJ-4 and API CI-4 PLUS oils. The average weight of incombustibles was lower in the trucks using API CJ-4 oils at 1.0% sulfated ash, than in those using API CI-4 PLUS oils at 1.4% sulfated ash. The difference in weight between the two groups was highly significant. Further, the weight of the incombustibles per kilometer substantially decreased with each subsequent cleaning within a truck.
Journal Article

Unregulated Harmful Substances in Exhaust Gas from Diesel Engines

2009-06-15
2009-01-1870
The volatile organic compounds (VOC) from diesel engines, including formaldehyde and benzene, are concerned and remain as unregulated harmful substances. The substances are positively correlated with THC emissions, but the VOC and aldehyde compounds at light load or idling conditions are more significant than THC. When coolant temperatures are low at light loads, there are notable increases in formaldehyde and acetaldehyde, and with lower coolant temperatures the increase in aldehydes is more significant than the increase in THC. When using ultra high EGR so that the intake oxygen content decreases below 10%, formaldehyde, acetaldehyde, benzene, and 1,3-butadiene increase significantly while smokeless and ultra low Nox combustion is possible.
Journal Article

Measuring Diesel Ash Emissions and Estimating Lube Oil Consumption Using a High Temperature Oxidation Method

2009-06-15
2009-01-1843
Diesel engine ash emissions are composed of the non-combustible portions of diesel particulate matter derived mainly from lube oil, and over time can degrade diesel particulate filter performance. This paper presents results from a high temperature oxidation method (HTOM) used to estimate ash emissions, and engine oil consumption in real-time. Atomized lubrication oil and diesel engine exhaust were used to evaluate the HTOM performance. Atomized fresh and used lube oil experiments showed that the HTOM reached stable particle size distributions and concentrations at temperatures above 700°C. The HTOM produced very similar number and volume weighted particle size distributions for both types of lube oils. The particle number size distribution was unimodal, with a geometric mean diameter of about 23 nm. The volume size distribution had a geometric volume mean diameter of about 65 nm.
Journal Article

Soot Removal from Diesel Engine Lubrication Systems

2010-10-25
2010-01-2101
The removal of soot in the lubricating sumps of diesel engines is a formidable task, further compounded by the introduction of Exhaust Gas Recirculation (EGR). Efficient removal of soot would help ensure engine durability and engine performance while increasing oil drain intervals thus reducing maintenance costs. This paper describes a method by which soot can be separated from the oil with the application of an electric field by utilizing the small electrical charge on the soot particles. The electric field is applied to a network of electrodes that support an open porous network which stabilizes the weakly bound soot cake. Significantly higher filtration efficiency was achieved as compared to mechanical particulate filtration and centrifugation. The paper also discusses the controlling conditions while detailing the performance testing at both a bench scale level and pilot scale level.
Journal Article

Feasibility of Using Full Synthetic Low Viscosity Engine Oil at High Ambient Temperatures in Military Vehicles

2010-10-25
2010-01-2176
The US Army is currently assessing the feasibility and defining the requirements of a Single Common Powertrain Lubricant (SCPL). This new lubricant would consist of an all-season (arctic to desert), fuel-efficient, multifunctional powertrain fluid with extended drain capabilities. As a developmental starting point, diesel engine testing has been conducted using the current MIL-PRF-46167D arctic engine oil at high temperature conditions representative of desert operation. Testing has been completed using three high density military engines: the General Engine Products 6.5L(T) engine, the Caterpillar C7, and the Detroit Diesel Series 60. Tests were conducted following two standard military testing cycles; the 210 hr Tactical Wheeled Vehicle Cycle, and the 400 hr NATO Hardware Endurance Cycle. Modifications were made to both testing procedures to more closely replicate the operation of the engine in desert-like conditions.
Journal Article

Waste Lubricating Oil as a Source of Hydrogen Fuel using Chemical Looping Steam Reforming

2010-10-25
2010-01-2192
Initial results are presented for the production of hydrogen from waste lubricating oil using a chemical looping reforming (CLR) process. The development of flexible and sustainable sources of hydrogen will be required to facilitate a "hydrogen economy." The novel CLR process presented in this paper has an advantage over hydrogen production from conventional steam reforming because CLR can use complex, low value, waste oils. Also, because the process is scalable to small and medium size, hydrogen can be produced close to where it is required, minimizing transport costs. Waste lubricating oil typically contains 13-14% weight of hydrogen, which through the steam reforming process could produce a syngas containing around 75 vol% H₂, representing over 40 wt% of the fuel. The waste oil was converted to a hydrogen-rich syngas in a packed bed reactor, using a Ni/ Al₂O₃ catalyst as the oxygen transfer material (OTM).
Journal Article

Permeability Measurements of Sintered and Paper Based Friction Materials for Wet Clutches and Brakes

2010-10-25
2010-01-2229
Wet clutches are important components used in the transmission and drive trains of many modern vehicles. The clutches transfer torque via the friction between a number of friction discs and the friction characteristics is therefore of great importance for the overall behavior of the vehicles. The friction characteristics is governed by a number of parameters such as lubricant base oil and additives, type and permeability of the friction material and temperature and surface roughness of the interacting surfaces. The permeability is considered to influence time of engagement and supply the sliding interface with lubricant and additives during engagement. In this work, a permeability measurement method suitable for wet clutch friction materials is thus used to measure the permeability of friction materials of different types; sintered bronze and paper based materials.
Journal Article

High Shear Rate Rheology of Lower Viscosity Engine Oils Over a Temperature Range of 80° to 150°C Using the Tapered Bearing Simulator (TBS) Viscometer

2010-10-25
2010-01-2288
In 2005, the growing emphasis on fuel efficiency coupled with the long-recognized negative effects of viscous friction caused by engine hydrodynamic lubrication, led to considerations of the benefits of lower viscosity engine oils by the SAE Engine Oil Viscosity Classification (EOVC) Task Force. More recently these considerations were given further impetus by OEM enquiry regarding modification of the SAE Viscosity Classification System to include oils of lower viscosity specification than that of SAE 20. For the EOVC Task Force, such considerations of commercially available, significantly lower viscosity engine oils, also produced a need to reassess the precision of high shear rate viscometry of such engine oils as presently practiced at 150°C - as well as interest in temperatures such as 100° and 120°C believed more representative of engine operating conditions.
Journal Article

Structural Evaluation of an Experimental Aluminum/Magnesium Decklid

2011-04-12
2011-01-0075
Experimental decklids for the Cadillac STS sedan were made with Al AA5083 sheet outer panels and Mg AZ31B sheet inner panels using regular-production forming processes and hardware. Joining and coating processes were developed to accommodate the unique properties of Mg. Assembled decklids were evaluated for dimensional accuracy, slam durability, and impact response. The assemblies performed very well in these tests. Explicit and implicit finite element simulations of decklids were conducted, and showed that the Al/Mg decklids have good stiffness and strength characteristics. These results suggest the feasibility of using Mg sheet closure panels from a structural perspective.
X