Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

The Feasibility of Downsizing a 1.25 Liter Normally Aspirated Engine to a 0.43 Liter Highly Turbocharged Engine

2007-09-16
2007-24-0083
In this paper, performance, efficiency and emission experimental results are presented from a prototype 434 cm3, highly turbocharged (TC), two cylinder engine with brake power limited to approximately 60 kW. These results are compared to current small engines found in today's automobile marketplace. A normally aspirated (NA) 1.25 liter, four cylinder, modern production engine with similar brake power output is used for comparison. Results illustrate the potential for downsized engines to significantly reduce fuel consumption while still maintaining engine performance. This has advantages in reducing vehicle running costs together with meeting tighter carbon dioxide (CO2) emission standards. Experimental results highlight the performance potential of smaller engines with intake boosting. This is demonstrated with the test engine achieving 25 bar brake mean effective pressure (BMEP).
Technical Paper

Compression Ratio Effects on Performance, Efficiency, Emissions and Combustion in a Carbureted and PFI Small Engine

2007-08-05
2007-01-3623
This paper compares the performance, efficiency, emissions and combustion parameters of a prototype two cylinder 430 cm3 engine which has been tested in a variety of normally aspirated (NA) modes with compression ratio (CR) variations. Experiments were completed using 98-RON pump gasoline with modes defined by alterations to the induction system, which included carburetion and port fuel injection (PFI). The results from this paper provide some insight into the CR effects for small NA spark ignition (SI) engines. This information provides future direction for the development of smaller engines as engine downsizing grows in popularity due to rising oil prices and recent carbon dioxide (CO2) emission regulations. Results are displayed in the engine speed, manifold absolute pressure (MAP) and CR domains, with engine speeds exceeding 10000 rev/min and CRs ranging from 9 to 13. Combustion analysis is also included, allowing mass fraction burn (MFB) comparison.
Technical Paper

Abnormal Combustion including Mega Knock in a 60% Downsized Highly Turbocharged PFI Engine

2010-05-05
2010-01-1456
This paper provides insight into abnormal combustion events observed during engine development of a highly turbocharged downsized engine configuration. The results and findings in this paper may contribute to the understanding of problems in small downsized engines which are becoming more common in the search for reduced fuel consumption. These problems are combustion limitations at high manifold pressures and compression ratios as designers and engineers endeavor to further reduce engine capacities. Abnormal combustion effects, analysis and development efforts are described for the 0.43 liter test engine, which was fitted with a port fuel injection fuel delivery system. The inline two cylinder engine used in experiments was specifically designed, constructed and developed to enable 25 bar BMEP and 60 kW of brake power to be reliably achieved while operating on pump gasoline.
X