Refine Your Search

Topic

Search Results

Journal Article

A Work-Based Window Method for Calculating In-Use Brake-Specific NOx Emissions of Heavy-Duty Diesel Engines

2008-04-14
2008-01-1301
A work-based window method has been developed to calculate in-use brake-specific oxides of nitrogen (NOx) emissions for all engine speeds and engine loads. During an in-use test, engine speed and engine torque are read from the engine's electronic control unit, and along with time, are used to determine instantaneous engine power. Instantaneous work is calculated using this power and the time differential in the data collection. Work is then summed until the target amount of work is accumulated. The emissions levels are then calculated for that window of work. It was determined that a work window equal to the theoretical Federal Test Procedure (FTP) cycle work best provides a means of comparison to the FTP certification standard. Also, a failure criterion has been established based on the average amount of power generated in the work window and the amount of time required to achieve the target work window to determine if a particular work window is valid.
Journal Article

Summary of In-use NOx Emissions from Heavy-Duty Diesel Engines

2008-04-14
2008-01-1298
As part of the 1998 Consent Decrees concerning alternative ignition strategies between the six settling heavy-duty diesel engine manufacturers and the United States government, the engine manufacturers agreed to perform in-use emissions measurements of their engines. As part of the Consent Decrees, pre- (Phase III, pre-2000 engines) and post- (Phase IV, 2001 to 2003 engines) Consent Decree engines used in over-the-road vehicles were tested to examine the emissions of oxides of nitrogen (NOx) and carbon dioxide (CO2). A summary of the emissions of NOx and CO2 and fuel consumption from the Phase III and Phase IV engines are presented for 30 second “Not-to-Exceed” (NTE) window brake-specific values. There were approximately 700 Phase III tests and 850 Phase IV tests evaluated in this study, incorporating over 170 different heavy duty diesel engines spanning 1994 to 2003 model years. Test vehicles were operated over city, suburban, and highway routes.
Journal Article

The Influence of Accelerator Pedal Position Control during Transient Laboratory Testing on Heavy Duty Diesel Engines

2009-04-20
2009-01-0619
Pollutants are a major issue of diesel engines, with oxides of nitrogen (NOx) and airborne total particulate matter (TPM) of primary concern. Current emission standards rely on laboratory testing using an engine dynamometer with a standard test procedure. Results are reported as an integrated value for emissions from a transient set of engine speed and load conditions over a length of time or a set of prescribed speed-load points. To be considered a valid test by the US EPA, the measured engine speed and load are compared to the prescribed engine speed and load and must be within prescribed regression limits.
Technical Paper

Experimental and Error Analysis Investigation into Dilution Factor Equations

2007-04-16
2007-01-0310
As emission regulations become increasingly strict, the need for more accurate sampling systems becomes essential. When calculating emissions from a dilution system, a correction is made to remove the effects of contaminants in the dilution air. The dilution air correction was explored to determine why this correction is needed, when this correction is important, and what methods are available for calculating the dilution factor (DF). An experimental and error analysis investigation into the standard and recently proposed methods for calculating the DF was conducted. Five steady state modes were run on a 1992 Detroit Diesel engine series 60 and the DF from eleven different equations were investigated. The effects of an inaccurate dilution air correction on calculated fuel flow from a carbon balance and the mass emissions was analyzed. The dilution air correction was shown to be important only for hydrocarbons, particulate matter (PM), and CO2.
Technical Paper

Parametric Study of 2007 Standard Heavy-Duty Diesel Engine Particulate Matter Sampling System

2007-01-23
2007-01-0060
Heavy-Duty Diesel (HDD) engines' particulate matter (PM) emissions are most often measured quantitatively by weighing filters that collect diluted exhaust samples pre- and post-test. PM sampling systems that dilute exhaust gas and collect PM samples have different effects on measured PM data. Those effects usually contribute to inter-laboratory variance. The U.S. Environmental Protection Agency (EPA)'s 2007 PM emission measurement regulations for the test of HDD engines should reduce variability, but must also cope with PM mass that is an order of magnitude lower than legacy engine testing. To support the design of a 2007 US standard HDD PM emission sampling system, a parametric study based on a systematic Simulink® model was performed. This model acted as an auxiliary design tool when setting up a new 2007 HDD PM emission sampling system in a heavy-duty test cell at West Virginia University (WVU). It was also designed to provide assistance in post-test data processing.
Technical Paper

Heat Release and Emission Characteristics of B20 Biodiesel Fuels During Steady State and Transient Operation

2008-04-14
2008-01-1377
Biodiesel fuels benefit both from being a renewable energy source and from decreasing in carbon monoxide (CO), total hydrocarbons (THC), and particulate matter (PM) emissions relative to petroleum diesel. The oxides of nitrogen (NOx) emissions from biodiesel blended fuels reported in the literature vary relative to baseline diesel NOx, with no NOx change or a NOx decrease found by some to an increase in NOx found by others. To explore differences in NOx, two Cummins ISM engines (1999 and 2004) were operated on 20% biodiesel blends during the heavy-duty transient FTP cycle and the steady state Supplemental Emissions Test. For the 2004 Cummins ISM engine, in-cylinder pressure data were collected during the steady state and transient tests. Three types of biodiesel fuels were used in the blends: soy, tallow (animal fat), and cottonseed. The FTP integrated emissions of the B20 blends produced a 20-35% reduction in PM and no change or up to a 4.3% increase in NOx over the neat diesel.
Technical Paper

and Repeatability of Transient Heat Release Analysis for Heavy Duty Diesel Engines

2009-04-20
2009-01-1125
Reduced emissions, improved fuel economy, and improved performance are a priority for manufacturers of internal combustion engines. However, these three goals are normally interrelated and difficult to optimize simultaneously. Studying the experimental heat release provides a useful tool for combustion optimization. Heavy-duty diesel engines are inherently transient, even during steady state operation engine controls can vary due to exhaust gas recirculation (EGR) or aftertreatment requirements. This paper examines the heat release and the derived combustion characteristics during steady state and transient operation for a 1992 DDC series 60 engine and a 2004 Cummins ISM 370 engine. In-cylinder pressure was collected during repeat steady state SET and the heavy-duty transient FTP test cycles.
Technical Paper

Creation and Evaluation of a Medium Heavy-Duty Truck Test Cycle

2003-10-27
2003-01-3284
The California Air Resources Board (ARB) developed a Medium Heavy-Duty Truck (MHDT) schedule by selecting and joining microtrips from real-world MHDT. The MHDT consisted of three modes; namely, a Lower Speed Transient, a Higher Speed Transient, and a Cruise mode. The maximum speeds of these modes were 28.9, 58.2 and 66.0 mph, respectively. Each mode represented statistically selected truck behavior patterns in California. The MHDT is intended to be applied to emissions characterization of trucks (14,001 to 33,000lb gross vehicle weight) exercised on a chassis dynamometer. This paper presents the creation of the MHDT and an examination of repeatability of emissions data from MHDT driven through this schedule. Two trucks were procured to acquire data using the MHDT schedule. The first, a GMC truck with an 8.2-liter Isuzu engine and a standard transmission, was tested at laden weight (90% GVW, 17,550lb) and at unladen weight (50% GVW, 9,750lb).
Technical Paper

Measurement of Brake-specific NOX Emissions using Zirconia Sensors for In-use, On-board Heavy-duty Vehicle Applications

2002-05-06
2002-01-1755
Emissions tests for heavy -duty diesel-fueled engines and vehicles are normally performed using engine dynamometers and chassis dynamometers, respectively, with laboratory grade gaseous concentration measurement analyzers and supporting test equipment. However, a considerable effort has been recently expended on developing in-use, on-board tools to measure brake-specific emissions from heavy -duty vehicles with the highest degree of accuracy and precision. This alternative testing methodology would supplement the emissions data that is collected from engine and chassis dynamometer tests. The on-board emissions testing methodology entails actively recording emissions and vehicle operating parameters (engine speed and load, vehicle speed etc.) from vehicles while they are operating on the road. This paper focuses on in-use measurements of NOX with zirconium oxide sensors and other portable NOX detectors.
Technical Paper

Determination of In-Use Brake-Specific Emissions from Off-Road Equipment Powered by Mechanically Controlled Diesel Engines

2002-05-06
2002-01-1756
Exhaust emissions from off-highway diesel engines are a significant contributor of both oxides of nitrogen (NOx) and particulate matter (PM) to air inventories. Yet, emissions research activities aimed solely at the off-highway arena have been minimal - largely overshadowed by the extensive efforts directed toward the on-highway sector. However, with current trends indicating that the performance of these off-highway vehicles will become increasingly more scrutinized by federal regulatory agencies, augmentation of current research efforts will be necessary. The global objective for this study was to collect vehicle activity information for diesel-powered off-highway vehicles while they were operated in the field. Engine speed and raw exhaust CO2 concentrations were recorded and then used to create engine dynamometer test cycles. The engine was exercised according to these cycles in the laboratory so that the mass emissions rates of exhaust gas pollutants could be measured.
Technical Paper

Measurement of In-Use, On-Board Emissions from Heavy-Duty Diesel Vehicles:Mobile Emissions Measurement System

2001-09-24
2001-01-3643
Emissions tests for heavy-duty diesel-fueled vehicles are normally performed using an engine dynamometer or a chassis dynamometer. Both of these methods generally entail the use of laboratory-grade emissions measurement instrumentation, a CVS system, an environment control system, a dynamometer, and associated data acquisition and control systems. The results obtained from such tests provide a means by which engines may be compared to the emissions standards, but may not be truly indicative of an engine's in-vehicle performance while operating on the road. An alternative to such a testing methodology would be to actively record the emissions from a vehicle while it was operating on-road. A considerable amount of discussion has been focused on the development of on-road emissions measurement systems (OREMS) that would provide for such in-use emissions data collection.
Technical Paper

Chemical Speciation of Exhaust Emissions from Trucks and Buses Fueled on Ultra-Low Sulfur Diesel and CNG

2002-03-04
2002-01-0432
A recently completed program was developed to evaluate ultra-low sulfur diesel fuels and passive diesel particle filters (DPF) in several different truck and bus fleets operating in Southern California. The primary test fuels, ECD and ECD-1, are produced by ARCO, a BP company, and have less than 15 ppm sulfur content. A test fleet comprised of heavy-duty trucks and buses were retrofitted with one of two types of catalyzed diesel particle filters, and operated for one year. As part of this program, a chemical characterization study was performed in the spring of 2001 to compare the exhaust emissions using the test fuels with and without aftertreatment. A detailed speciation of volatile organic hydrocarbons (VOC), polycyclic aromatic hydrocarbons (PAH), nitro-PAH, carbonyls, polychlorodibenzo-p-dioxins (PCDD) and polychlorodibenzo-p-furans (PCDF), inorganic ions, elements, PM10, and PM2.5 in diesel exhaust was performed for a select set of vehicles.
Technical Paper

Speciation of Organic Compounds from the Exhaust of Trucks and Buses: Effect of Fuel and After-Treatment on Vehicle Emission Profiles

2002-10-21
2002-01-2873
A study was performed in the spring of 2001 to chemically characterize exhaust emissions from trucks and buses fueled by various test fuels and operated with and without diesel particle filters. This study was part of a multi-year technology validation program designed to evaluate the emissions impact of ultra-low sulfur diesel fuels and passive diesel particle filters (DPF) in several different heavy-duty vehicle fleets operating in Southern California. The overall study of exhaust chemical composition included organic compounds, inorganic ions, individual elements, and particulate matter in various size-cuts. Detailed descriptions of the overall technology validation program and chemical speciation methodology have been provided in previous SAE publications (2002-01-0432 and 2002-01-0433).
Technical Paper

Regulated Emissions from Heavy Heavy-Duty Diesel Trucks Operating in the South Coast Air Basin

2006-10-16
2006-01-3395
Heavy duty diesel vehicle (HDDV) emissions are known to affect air quality, but few studies have quantified the real-world contribution to the inventory. The objective of this study was to provide data that may enable ambient emissions investigators to m,odel the air quality more accurately. The 25 vehicles reported in this paper are from the first phase of a program to determine representative regulated emissions from Heavy Heavy-Duty Diesel Trucks (HHDDT) operating in Southern California. Emissions data were gathered using a chassis dynamometer, full flow dilution tunnel, and research grade analyzers. The subject program employed two truck test weights and four new test modes (one was idle operation), in addition to the Urban Dynamometer Driving Schedule (UDDS), and the AC50/80 cycle. The reason for such a broad test cycle scope was to determine thoroughly how HHDDT emissions are influenced by operating cycle to improve accuracy of models.
Technical Paper

Influences of Real-World Conditions on In-Use Emission from Heavy-Duty Diesel Engines

2006-10-16
2006-01-3393
The 1998 Consent Decrees between the settling heavy-duty diesel engine manufacturers and the United States Government require the engine manufacturer to perform in-use emissions testing to evaluate their engine designs and emissions when the vehicle is placed into service. This additional requirement will oblige the manufacturer to account for real-world conditions when designing engines and engine control algorithms and include driving conditions, ambient conditions, and fuel properties in addition to the engine certification test procedures. Engine operation and ambient conditions can be designed into the engine control algorithm. However, there will most likely be no on-board determination of fuel properties or composition in the near future. Therefore, the engine manufacturer will need to account for varying fuel properties when developing the engine control algorithm for when in-use testing is performed.
Technical Paper

Effects of Oil Aging on Laboratory Measurement of Emissions from a Legacy Heavy-duty Diesel Engine

2011-04-12
2011-01-1163
Diesel engines are highly reliable, durable and are used for a wide range of applications with low fuel usage owing to its higher thermal efficiency compared to other mobile power sources. Heavy-duty diesel engines are used for both on-road and off-road applications and dominate the heavy-duty engine segment of the United States transportation market. Due to their high reliability, there are considerable numbers of on-road legacy heavy-duty diesel engine fleets still in use in the United States. These engines are relatively higher oxides of nitrogen (NOx) and particulate matter (PM) producers than post 2007 model year diesel engines. There have been various emission certification or verification programs which are carried out in states like California and Texas for different aftermarket retrofit devices, fuels and additive technologies for reducing NOx and PM emissions from these legacy diesel engines.
Technical Paper

NOX Decomposition in Natural Gas, Diesel and Gasoline Engines for Selective NOX Recirculation

2005-05-11
2005-01-2144
Selective NOX Recirculation (SNR) involves three main steps in NOX reduction. The first step adsorbs NOX from the exhaust stream, followed by periodic desorption from the aftertreatment medium. The final step passes the desorbed NOX gas into the intake air stream and feeds into the engine. A percentage of the NOX is expected to be decomposed during the combustion process. The motivation for this research was to clarify the reduction of NOX from large stationary engines. The objective of this paper is to report the NOX decomposition phenomenon during the combustion process from three test engines. The results will be used to develop an optimal system for the conversion of NOX with a NOX adsorbtion system. A 1993 Cummins L10G natural gas engine, a 1992 Detroit Diesel series 60 engine and a 13hp Honda gasoline engine were used in the experiments. Commercially available nitric oxide (NO) was injected into the engine intake to mimic the NOX stream from the desorption process.
Technical Paper

Correlation Study of PM and NOx for Heavy-Duty Vehicles Across Multiple Drive Schedules

2004-10-25
2004-01-3022
When heavy-duty truck emissions are expressed in distance-specific units (such as g/mile), the values may depend strongly on the nature of the test cycle or schedule. Prior studies have compared emissions gained using different schedules and have proposed techniques for translating emissions factor rates between schedules. This paper reviews emissions data from the 5-mode CARB HHDDT Schedule, UDDS Schedule, and a steady-state cycle (AC5080), with reference to each other. NOX and PM emissions are the two components of emissions which are reviewed. A heavy-duty chassis dynamometer was used for emissions characterization along with a full scale dilution tunnel. The vehicle test weights were simulated at 30,000 lbs, 56,000 lbs, and 66,000 lbs. For each vehicle, average data from one mode or cycle have been compared with average data for a different mode or cycle.
Technical Paper

Assessment of NOx Destruction in Diesel Engines by Injecting NO in the Intake Manifold

2005-04-11
2005-01-0370
Emissions from diesel engines, particularly NOx and TPM emissions are harmful to the environment. Reduction of NOx emissions from diesel engines is of increasing concern. In 1998, a novel approach called Selective NOx Recirculation (SNR) was used to reduce NOx emissions in diesel engines. The SNR concept relies on two major parts, one to collect the NOx emissions from the exhaust by an adsorber, and another to decompose NOx using the in-cylinder combustion process by injecting the collected NOx emissions into the intake manifold at an elevated concentration. This paper deals with the destruction rates during the combustion process. A 1992 DDC series 60, 350 hp, 12.7 liter engine was connected to a 500 hp DC dynamometer. A full-scale dilution tunnel and analyzers capable of measuring continuous NOx, CO2, CO, HC, and PM in the exhaust were used.
Technical Paper

Transient Emissions Comparisons of Alternative Compression Ignition Fuels

1999-03-01
1999-01-1117
The effects of fuel composition on emissions levels from compression ignition engines can be profound, and this understanding has led to mandated reductions in both sulfur and aromatic content of automotive diesel fuels. A Navistar T444E (V8, 7.3 liter) engine was installed on an engine dynamometer and subjected to transient emissions measurement using a variety of fuels, namely federal low sulfur pump diesel; California pump diesel; Malaysian Fischer-Tropsch fuel with very low sulfur and aromatic content; various blends of soy-derived biodiesel; a Fischer-Tropsch fuel with very low sulfur and 10% aromatics; and the same Fischer-Tropsch fuel with 10% isobutanol by volume. The biodiesel blends showed their ability to reduce particulate matter, but at the expense of increasing oxides of nitrogen (NOx), following the simple argument that cetane enhancement led to earlier ignition. However, the Fischer-Tropsch fuels showed their ability to reduce all of the regulated emissions.
X