Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Estimation of Mass and Inertia Properties of Human Body Segments for Physics-based Human Modeling and Simulation Applications

2009-06-09
2009-01-2301
This paper describes an effective integrated method for estimation of subject-specific mass, inertia tensor, and center of mass of individual body segments of a digital avatar for use with physics-based digital human modeling simulation environment. One of the main goals of digital human modeling and simulation environments is that a user should be able to change the avatar (from male to female to a child) at any given time. The user should also be able to change the various link dimensions, like lengths of upper and lower arms, lengths of upper and lower legs, etc. These customizations in digital avatar's geometry change the kinematic and dynamic properties of various segments of its body. Hence, the mass and center of mass/inertia data of the segments must be updated before simulating physics-based realistic motions. Most of the current methods use mass and inertia properties calculated from a set of regression equations based on average of some population.
Journal Article

Using Designing for Human Variability to optimize Aircraft eat Layout

2009-06-09
2009-01-2310
Integrating the seemingly divergent objectives of aircraft seat configuration is a difficult task. Aircraft manufacturers look to design seats to maximize customer satisfaction and in-flight safety, but these objectives can conflict with the profit motive of airline companies. In order to boost revenue by increasing the number of passengers per aircraft, airline companies may increase seat height and decrease seat pitch. This results in disaccommodation of a greater percentage of the passenger population and is a reason for rising customer dissatisfaction. This paper describes an effort to bridge this gap by incorporating digital human models, layout optimization, and a profit-maximizing constraint into the aircraft seat design problem. A simplified aircraft seat design experiment is conceptualized and its results are extrapolated to an airline passenger population.
Journal Article

Fuel Economy Benefits of a Flywheel & CVT Based Mechanical Hybrid for City Bus and Commercial Vehicle Applications

2009-10-06
2009-01-2868
Hybrid drivetrain systems are becoming increasingly prevalent in Automotive and Commercial Vehicle applications and have also been introduced for the 2009 Formula1 motorsport season. The F1 development has the clear intent of directing technical development in motorsport to impact the key issue of fuel efficiency in mainstream vehicles. In order to promote all technical developments, the type of system (electrical, mechanical, hydraulic, etc) for the F1 application has not been specified. A significant outcome of this action is renewed interest and development of mechanical hybrid systems comprising a high speed composite flywheel and a full-toroidal traction drive Continuously Variable Transmission (CVT). A flywheel based mechanical hybrid has few system components, low system costs, low weight and dispenses with the energy state changes of electrical systems producing a highly efficient and power dense hybrid system.
Journal Article

Consideration of Critical Cornering Control Characteristics via Driving Simulator that Imparts Full-range Drift Cornering Sensations

2009-10-06
2009-01-2922
A driving simulator capable of duplicating the critical sensations incurred during a spin, or when a driver is engaged in drift cornering, was constructed by Mitsubishi Heavy Industries, Ltd., and Hiromichi Nozaki of Kogakuin University. Specifically, the simulator allows independent movement along three degrees of freedom and is capable of exhibiting extreme yaw and lateral acceleration behaviors. Utilizing this simulator, the control characteristics of drift cornering have become better understood. For example, after a J-turn behavior experiment involving yaw angle velocity at the moment when the drivers attention transitions to resuming straight ahead driving, it is now understood that there are major changes in driver behavior in circumstances when simulator motions are turned off, when only lateral acceleration motion is applied, when only yaw motion is applied, and when combined motions (yaw + lateral acceleration) are applied.
Journal Article

Flying Test Bed Performance Testing of High-Bypass-Ratio Turbofans

2009-11-10
2009-01-3133
The commercial turbofan trend of increasing bypass ratio and decreasing fan pressure ratio has seen its latest market entry in Pratt & Whitney's PurePower™ product line, which will power regional aircraft for the Bombardier and Mitsubishi corporations, starting in 2013. The high-bypass-ratio, low-fan-pressure-ratio trend, which is aimed at diminishing noise while increasing propulsive efficiency, combines with contemporary business factors including the escalating cost of testing and limited availability of simulated altitude test sites to pose formidable challenges for engine certification and performance validation. Most fundamentally, high bypass ratio and low fan pressure ratio drive increased gross-to-net thrust ratio and decreased fan temperature rise, magnifying by a factor of two or more the sensitivity of in-flight thrust and low spool efficiency to errors of measurement and assumption, i.e., physical modeling.
Journal Article

Residual Stress Analysis of Punched Holes in 6013 Aluminum Alloy Commercial Vehicle Side Rails

2010-10-05
2010-01-1909
Compliance with tighter emission regulations has increased the proportion of parasitic weight in commercial vehicles. In turn, the amount of payload must be reduced to comply with transportation weight requirements. A re-design of commercial vehicle components is necessary to decrease the vehicle weight and improve payload capacity. Side rails have traditionally been manufactured from high strength steels, but significant weight reductions can be achieved by substituting steel side rails with 6013 high strength aluminum alloy side rails. Material and stress analyses are presented in this paper in order to understand the effect of manufacturing process on the material's mechanical behavior. Metallographic and tensile test experiments for the 6013-T4 alloy were performed in preparation for residual stress measurements of a punching operation. Punched holes are critical to the function of the side rail and can lead to high stress levels and cracking.
Journal Article

Analysis of Ride Vibration Environment of Soil Compactors

2010-10-05
2010-01-2022
The ride dynamics of typical North-American soil compactors were investigated via analytical and experimental methods. A 12-degrees-of-freedom in-plane ride dynamic model of a single-drum compactor was formulated through integrations of the models of various components such as driver seat, cabin, roller drum and drum isolators, chassis and the tires. The analytical model was formulated for the transit mode of operation at a constant forward speed on undeformable surfaces with the roller vibrator off. Field measurements were conducted to characterize the ride vibration environments during the transit mode of operation. The measured data revealed significant magnitudes of whole-body vibration of the operator-station along the vertical, lateral, pitch and roll-axes. The model results revealed reasonably good agreements with ranges of the measured vibration data.
Journal Article

Mitigating Heavy Truck Rear-End Crashes with the use of Rear-Lighting Countermeasures

2010-10-05
2010-01-2023
In 2006, there were approximately 23,500 rear-end crashes involving heavy trucks (i.e., gross vehicle weight greater than 4,536 kg). The Enhanced Rear Signaling (ERS) for Heavy Trucks project was developed by the Federal Motor Carrier Safety Administration (FMCSA) to investigate methods to reduce or mitigate those crashes where a heavy truck has been struck from behind by another vehicle. Visual warnings have been shown to be effective, assuming the following driver is looking directly at the warning display or has his/her eyes drawn to it. A visual warning can be placed where it is needed and it can be designed so that its meaning is nearly unambiguous. FMCSA contracted with the Virginia Tech Transportation Institute (VTTI) to investigate potential benefit of additional rear warning-light configurations as rear-end crash countermeasures for heavy trucks.
Journal Article

Sensor Data Fusion for Active Safety Systems

2010-10-19
2010-01-2332
Active safety systems will have a great impact in the next generation of vehicles. This is partly originated by the increasing consumer's interest for safety and partly by new traffic safety laws. Control actions in the vehicle are based on an extensive environment model which contains information about relevant objects in vehicle surroundings. Sensor data fusion integrates measurements from different surround sensors into this environment model. In order to avoid system malfunctions, high reliability in the interpretation of the situation, and therefore in the environment model, is essential. Hence, the main idea of data fusion is to make use of the advantages of using multiple sensors and different technologies in order to fulfill these requirements, which are especially high due to autonomous interventions in vehicle dynamics (e. g. automatic emergency braking).
Journal Article

Neutron Diffraction Studies of Intercritically Austempered Ductile Irons

2011-04-12
2011-01-0033
Neutron diffraction is a powerful tool that can be used to identify the phases present and to measure the spacing of the atomic planes in a material. Thus, the residual stresses can be determined within a component and/or the phases present. New intercritically austempered irons rely on the unique properties of the austenite phase present in their microstructures. If these materials are to see widespread use, methods to verify the quality (behavior consistency) of these materials and to provide guidance for further optimization will be needed. Neutron diffraction studies were performed at the second generation neutron residual stress facility (NRSF2) at the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory on a variety of intercritically austempered irons. For similar materials, such as TRIP steels, the strengthening mechanism involves the transformation of metastable austenite to martensite during deformation.
Journal Article

Structural Optimization for Vehicle Dynamics Loadcases

2011-04-12
2011-01-0058
As mass reduction becomes an increasingly important enabler for fuel economy improvement, having a robust structural development process that can comprehend Vehicle Dynamics-specific requirements is correspondingly important. There is a correlation between the stiffness of the body structure and the performance of the vehicle when evaluated for ride and handling. However, an unconstrained approach to body stiffening will result in an overly-massive body structure. In this paper, the authors employ loads generated from simulation of quasi-static and dynamic vehicle events in ADAMS, and exercise structural finite element models to recover displacements and deflected shapes. In doing so, a quantitative basis for considering structural vehicle dynamics requirements can be established early in the design/development process.
Journal Article

Tire Sensors for the Measurement of Slip Angle and Friction Coefficient and Their Use in Stability Control Systems

2011-04-12
2011-01-0095
Intelligent tires are envisioned to be an important part of the future vehicle control systems and the three dimensional wireless MEMS accelerometers embedded inside the tire stand out as a promising candidate for the development of intelligent tires. The first part of the paper focuses on accelerometer based tire sensors for the estimation of slip angle and tire/road friction coefficient. We use a simple tire finite element model to generate lateral, tangential and radial tire accelerations for a fixed load and slip angle. The profiles are validated by using experimental data. The simulated acceleration profiles are used for the estimation of slip angle and tire/road friction coefficient. We present the estimation algorithms, promising simulative results and output sensitivities studies focused on the effects of changes in normal load, tire pressure and vehicle velocity.
Journal Article

Development of Driving Control System Based on Optimal Distribution for a 6WD/6WS Vehicle

2010-04-12
2010-01-0091
This paper describes a driving controller to improve vehicle lateral stability and maneuverability for a six wheel driving / six wheel steering (6WD/6WS) vehicle. The driving controller consists of upper and lower level controller. The upper level controller based on sliding control theory determines front, middle steering angle, additional net yaw moment and longitudinal net force according to reference velocity and steering of a manual driving, remote control and autonomous controller. The lower level controller takes desired longitudinal net force, yaw moment and tire force information as an input and determines additional front steering angle and distributed longitudinal tire force on each wheel. This controller is based on optimal distribution control and has considered the friction circle related to vertical tire force and friction coefficient acting on the road and tire.
Journal Article

An Integrated Design Method for Articulated Heavy Vehicles with Active Trailer Steering Systems

2010-04-12
2010-01-0092
This paper presents an integrated design method for active trailer steering (ATS) systems of articulated heavy vehicles (AHVs). Of all contradictory design goals of AHVs, two of them, i.e. path-following at low speeds and lateral stability at high speeds, may be the most fundamental and important, which have been bothering vehicle designers and researchers. To tackle this problem, a new design synthesis approach is proposed: with design optimization techniques, the active design variables of ATS systems and passive design variables of trailers can be optimized simultaneously; the ATS controller derived from this approach has two operational modes, one for improving lateral stability at high speeds and the other for enhancing path-following at low speeds. To demonstrate the effectiveness of the proposed approach, it is applied to the design of an ATS system for an AHV with a tractor and a full trailer.
Journal Article

Adhesion Control Method Based on Fuzzy Logic Control for Four-Wheel Driven Electric Vehicle

2010-04-12
2010-01-0109
The adhesion control is the basic technology of active safety for the four-wheel driven EV. In this paper, a novel adhesion control method based on fuzzy logic control is proposed. The control system can maximize the adhesion force without road condition information and vehicle speed signal. Also, the regulation torque to prevent wheel slip is smooth and the vehicle driving comfort is greatly improved. For implementation, only the rotating speed of the driving wheel and the motor driving torque signals are needed, while the derived information of the wheel acceleration and the skid status are used. The simulation and road test results have shown that the adhesion control method is effective for preventing slip and lock on the slippery road condition.
Journal Article

Advancement of Vehicle Dynamics Control with Monitoring the Tire Rolling Environment

2010-04-12
2010-01-0108
One of the most important challenges for electronic stability control (ESC) systems is the identification and monitoring of tire rolling environment, especially actual tire-road friction parameters. The presented research considers an advanced variant of the ESC system deducing the mentioned factors based on intelligent methods as fuzzy sets. The paper includes: Overview of key issues in prototyping the algorithms of Electronic Stability Control. Case study for vehicle model. Procedures for monitoring of tire rolling environment: theoretical backgrounds, computing methods, fuzzy input and output variables, fuzzy inference systems, interface with ESC algorithm. Case study for ESC control algorithm. Examples of simulation using Hardware-in-the-Loop procedures. The proposed approach can be widely used for the next-generation of ESC devices having the close integration with Intelligent Transport Systems.
Journal Article

Hydrostatic Wheel Drives for Vehicle Stability Control

2010-04-12
2010-01-0105
Hydrostatic (hydraulic hybrid) drives have demonstrated energy efficiency and emissions reduction benefits. This paper investigates the potential of an independent hydrostatic wheel drive system for implementing a traction-based vehicle lateral stability control system. The system allows an upper level vehicle stability controller to produce a desired corrective yaw moment via a differential distribution of torque to the independent wheel motors. In cornering maneuvers that require braking on any one wheel of the vehicle, the motors can be operated as pumps for re-generating energy into an on-board accumulator. This approach avoids or reduces activation of the friction brakes, thereby reducing energy waste as heat in the brake pads and offering potential savings in brake maintenance costs. For this study, a model of a 4×4 hydrostatic independent wheel drive system is constructed in a causal and modular fashion and is coupled to a 7 DOF vehicle handling dynamics model.
Journal Article

Integration of a Torsional Stiffness Model into an Existing Heavy Truck Vehicle Dynamics Model

2010-04-12
2010-01-0099
Torsional stiffness properties were developed for both a 53-foot box trailer and a 28-foot flatbed control trailer based on experimental measurements. In order to study the effect of torsional stiffness on the dynamics of a heavy truck vehicle dynamics computer model, static maneuvers were conducted comparing different torsional stiffness values to the original rigid vehicle model. Stiffness properties were first developed for a truck tractor model. It was found that the incorporation of a torsional stiffness model had only a minor effect on the overall tractor response for steady-state maneuvers up to 0.4 g lateral acceleration. The effect of torsional stiffness was also studied for the trailer portion of the existing model.
Journal Article

Handling and Ride Performance Sensitivity Analysis for a Truck-Trailer Combination

2010-04-12
2010-01-0642
A truck-trailer combination is modeled using ADAMS/Car from MSC Software for handling and ride comfort performance simulations. The handling events include a double lane change and lateral roll stability. The ride comfort performance events include several sized half-rounds and various RMS courses. The variables for handling performance evaluation include lateral acceleration, roll angles and tire patch normal loads. The variables for ride performance evaluation are absorbed power and peak acceleration. This study considers the trailer spring stiffness, anti-roll bar and jounce bumper gap as the design variables. Through DOE simulations, we derived the response surface models of various performance variables so that we could consider the performance sensitivities to the design variables.
Journal Article

Experimental and Analytical Evaluations of a Torsio-Elastic Suspension for Off-Road Vehicles

2010-04-12
2010-01-0643
The ride performance potentials of a prototype torsio-elastic axle suspension for an off-road vehicle were investigated analytically and experimentally. A forestry vehicle was fitted with the prototype suspension at its rear axle to assess its ride performance benefits. Field measurements of ride vibration along the vertical, lateral, fore-aft, roll and pitch axes were performed for the suspended and an unsuspended vehicle, while traversing a forestry terrain. The measured vibration responses of both vehicles were evaluated in terms of unweighted and frequency-weighted rms accelerations and the acceleration spectra, and compared to assess the potential performance benefits of the proposed suspension. The results revealed that the proposed suspension could yield significant reductions in the vibration magnitudes transmitted to the operator's station.
X