Refine Your Search

Search Results

Viewing 1 to 8 of 8
Journal Article

A Frontal Impact Taxonomy for USA Field Data

2008-04-14
2008-01-0526
An eight-group taxonomy was created to classify real-world frontal crashes from the Crashworthiness Data System (CDS) component of the National Automotive Sampling System (NASS). Three steps were taken to develop the taxonomy: (1) frontal-impact towaway crashes were identified by examining 1985-2005 model year light passenger vehicles with Collision Deformation Classification (CDC) data from the 1995-2005 calendar years of NASS; (2) case reviews, engineering judgments, and categorization assessments were conducted on these data to produce the eight-group taxonomy; and (3) two subsets of the NASS dataset were analyzed to assess the consistency of the resulting taxonomic-group frequencies. “Full-engagement” and “Offset” crashes were the most frequent crash types, each contributing approximately 33% to the total. The group identified as “D, Y, Z No-Rail” was the most over-represented crash type for vehicles with at least one seriously-injured occupant.
Technical Paper

Initial Assessment of the Next-Generation USA Frontal NCAP: Fidelity of Various Risk Curves for Estimating Field Injury Rates of Belted Drivers

2009-04-20
2009-01-0386
Various frontal impact risk curves were assessed for the next-generation USA New Car Assessment Program (NCAP). Specifically, the “NCAP risk curves” — those chosen by the government for the 2011 model year NCAP — as well as other published risk curves were used to estimate theoretically the injury rates of belted drivers in real-world frontal crashes. Two perspectives were considered: (1) a “point” estimate of NCAP-type events from NCAP fleet tests, and (2) an “aggregate” estimate of 0 ≤ ΔV ≤ 56 km/h crashes from a modeled theoretical vehicle whose NCAP performance approximated the average of the studied fleet. Four body regions were considered: head, neck, chest, and knee-thigh-hip complex (KTH). The curve-based injury rates for each body region were compared with those of real-world frontal crashes involving properly-belted adult drivers in airbag-equipped light passenger vehicles. The assessment yielded mixed results.
Technical Paper

A Theoretical, Risk Assessment Procedure for In-Position Drivers Involved in Full-Engagement Frontal Impacts

2003-03-03
2003-01-1354
A theoretical, mathematical, risk assessment procedure was developed to estimate the fraction of drivers that incurred head and thoracic AIS3+ injuries in full-engagement frontal crashes. The estimates were based on numerical simulations of various real-world events, including variations of crash severity, crash speed, level of restraint, and occupant size. The procedure consisted of four steps: (1) conduct the simulations of the numerous events, (2) use biomechanical equations to transform the occupant responses into AIS3+ risks for each event, (3) weight the maximum risk for each event by its real-world event frequency, and (4) sum the weighted risks. To validate the risk assessment procedure, numerous steps were taken. First, a passenger car was identified to represent average field performance.
Technical Paper

Field-based Assessments of Various AIS2+ Head Risk Curves for Frontal Impact

2015-04-14
2015-01-1437
In the present study, various risk curves for moderate-to-fatal head injury (AIS2+) were theoretically assessed by comparing model-based injury rates with field-based injury rates. This was accomplished by applying the risk curves in corresponding field models. The resulting injury rates were considered from two perspectives: aggregate (0-56 kph events) and point-estimate (higher-speed, barrier-like events). Four risk curves were studied: a HIC15-based curve from Mertz et al. (1997), a BRIC-based curve from Takhounts et al. (2011), a BrIC-based curve from Takhounts et al. (2013) and a Concussion-Correlate-based curve from Rowson et al. (2013). The field modeling pertained to adult drivers in 11-1 o'clock, towaway, full-engagement frontal crashes in the National Automotive Sampling System (NASS, calendar years = 1993-2012), and the model-year range of the passenger vehicles was 1985-2010.
Technical Paper

Injury Distributions of Belted Drivers in Various Types of Frontal Impact

2015-04-14
2015-01-1490
Injury distributions of belted drivers in 1998-2013 model-year light passenger cars/trucks in various types of real-world frontal crashes were studied. The basis of the analysis was field data from the National Automotive Sampling System (NASS). The studied variables were injury severity (n=2), occupant body region (n=8), and crash type (n=8). The two levels of injury were moderate-to-fatal (AIS2+) and serious-to-fatal (AIS3+). The eight body regions ranged from head/face to foot/ankle. The eight crash types were based on a previously-published Frontal Impact Taxonomy (FIT). The results of the study provided insights into the field data. For example, for the AIS2+ upper-body-injured drivers, (a) head and chest injury yield similar contributions, and (b) about 60% of all the upper-body injured drivers were from the combination of the Full-Engagement and Offset crashes.
Technical Paper

Predictions of AIS3+ Thoracic Risks for Belted Occupants in Full-Engagement, Real-World Frontal Impacts: Sensitivity to Various Theoretical Risk Curves

2003-03-03
2003-01-1355
A new, AIS3+ thoracic risk equation based on chest deflection was derived and assessed for drivers subjected to concentrated (belt-like) loading. The new risk equation was derived from analysis of an existing database of post mortem human subjects in controlled, laboratory sled tests. Binary logistic regression analysis was performed on a subset of the data, namely, 25th-75th percentile men (by weight) from 36-65 years old whose thoracic deformation patterns were due to concentrated (belt-like) loading. Other subsets of data had insufficient size to conduct the analysis. The resulting thoracic risk equation was adjusted to predict the AIS3+ thoracic risks for average-aged occupants in frontal crashes (i.e., 30 years old). Biomechanical scaling was used to derive the corresponding relationships for the small female and large male dummies. The new thoracic risk equations and three other sets of existing equations were evaluated as predictors of real-world crash outcomes.
Technical Paper

Derivation and Theoretical Assessment of a Set of Biomechanics-based, AIS2+ Risk Equations for the Knee-Thigh-Hip Complex

2006-11-06
2006-22-0005
A set of risk equations was derived to estimate the probability of sustaining a moderate-to-serious injury to the knee-thigh-hip complex (KTH) in a frontal crash. The study consisted of four parts. First, data pertaining to knee-loaded, whole-body, post-mortem human subjects (PMHS) were collected from the literature, and the attendant response data (e.g., axial compressive load applied to the knee) were normalized to those of a mid-sized male. Second, numerous statistical analyses and mathematical constructs were used to derive the set of risk equations for adults of various ages and genders. Third, field data from the National Automotive Sampling System (NASS) were analyzed for subsequent comparison purposes.
Technical Paper

A Theoretical Math Model for Projecting Ais3+ Thoracic Injury for Belted Occupants in Frontal Impacts

2004-11-01
2004-22-0020
A theoretical math model was created to assess the net effect of aging populations versus evolving system designs from the standpoint of thoracic injury potential. The model was used to project the next twenty-five years of thoracic injuries in Canada. The choice of Canada was topical because rulemaking for CMVSS 208 has been proposed recently. The study was limited to properly-belted, front-outboard, adult occupants in 11-1 o'clock frontal crashes. Moreover, only AIS3+thoracic injury potential was considered. The research consisted of four steps. First, sub-models were developed and integrated. The sub-models were made for numerous real-world effects including population growth, crash involvement, fleet penetration of various systems (via system introduction, vehicle production, and vehicle attrition), and attendant injury risk estimation. Second, existing NASS data were used to estimate the number of AIS3+ chest-injured drivers in Canada in 2001.
X