Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

ISAD®-A Computer Controlled Integrated Starter-Alternator-Damper-System

1997-08-06
972660
This paper will present a system still in development that can be used both to generate electric energy and to start combustion engines. What's more, this system functions as multiband damper and takes over the complete flywheel function. Conventional technology as we know it today is briefly reviewed and subjected to a comparison with ISAD® technology. This paper contains system descriptions, readings and diagrams for various functions and a presentation of the whole system in a select trial vehicle. The results show that a system of this kind is not only capable of replacing current technology but can also cover all the (presently known) future requirements - noiseless start operation, low-vibration idle, acceleration boosting and an extremely powerful alternator (>6-10 kW at η > 80%), which allows, for example, for the electrification of all the vehicle's auxiliary aggregates. Significant fuel savings and emissions reductions are also achieved.
Technical Paper

Model-based Development and Calibration of Hybrid Powertrains

2007-04-16
2007-01-0285
Hybrid vehicles are characterized by a combination of mechanical, electrical and control components. The complexity of this mechatronic system requires new methods and tools for a successful development of new hybrid vehicle concepts. It is now possible to accomplish certain tasks earlier in the development projects using virtual prototypes of the powertrain components and the vehicle. The process called “frontloading” integrates simulation, optimization and validation in earlier development phases of a vehicle and prevents from having cost intense problems in later development phases. Besides the reduction of emissions and fuel consumption also the subjective impression of the vehicle driveability are main goals for the optimization of hybrid powertrains.
Technical Paper

Consistent Development Methodology for hybrid AWD powertrains

2008-01-09
2008-28-0003
Highest grow or highest attention in vehicles power-train is related to AWD and hybrid concepts. Some of the targets for these technologies are conflicting, others are very similar, and sometimes it depends on the application. In a first look it is very questionable weather these technologies should be combined. But it can be shown, that the combination makes quite some sense. It is possible to get the superior performance and enhance safety combined with reasonable fuel economy by hybridizing an AWD powertrain. From simulation to testing, efficient processes and a consistent development platform is key to fulfill all the development tasks in the environment of this increased complexity. Simulation and benchmark activities are valuable in the early project phases to define the targets and create the specifications. In the virtual world the system selection is a major task. To get appropriate results software modules are incorporated in the simulation environment.
Technical Paper

Modeling of Engine Warm-Up with Integration of Vehicle and Engine Cycle Simulation

2001-05-14
2001-01-1697
The incorporation of a detailed engine process calculation that takes into account thermal behavior of the engine and exhaust system is essential for a realistic simulation of transient vehicle operation. This is the only possible way to have a precise preliminary calculation of fuel consumption and emissions. Therefore, a comprehensive thermal network of the engine based on the lumped capacity method has been developed. The model allows the computation of component temperatures in steady state operation as well as in transient engine studies, e.g. investigations of engine warm-up. The model is integrated in a co-simulation environment consisting of a detailed vehicle and engine cycle simulation code. The paper describes the procedure of the co-simulation and presents several examples of warm-up simulations.
Technical Paper

Automated Model-Based GDI Engine Calibration Adaptive Online DoE Approach

2002-03-04
2002-01-0708
Due to its high number of free parameters, the new generation of gasoline engines with direct injection require an efficient calibration process to handle the system complexity and to avoid a dramatic increase in calibration costs. This paper presents a concept of specific toolboxes within a standardized and automated calibration environment, supporting the complexity of GDI engines and establishing standard procedures for distributed development. The basic idea is the combination of a new and more efficient online DoE approach with the automatic and adaptive identification of the region of interest in the high dimensional parameter space. This guarantees efficient experimental designs even for highly non-linear systems with often irregularly shaped valid regions. As the main advantage for the calibration engineer, the new approach requires almost no pre-investigations and no specific statistical knowledge.
Technical Paper

Systematic Development of Hybrid Systems for Commercial Vehicles

2011-10-06
2011-28-0064
The reduction of CO₂ emissions represents a major goal of governments worldwide. In developed countries, approximately 20% of the CO₂ emissions originate from transport, one third of this from commercial vehicles. CO₂ emission legislation is in place for passenger cars in a number of major markets. For commercial vehicles such legislation was also already partly published or is under discussion. Furthermore the commercial vehicles market is very cost sensitive. Thus the major share of fuel cost in the total cost of ownership of commercial vehicles was already in the past a major driver for the development of efficient drivetrain solutions. These aspects make the use of new powertrain technologies, specifically hybridization, mandatory for future commercial powertrains. While some technologies offer a greater potential for CO₂ reduction than others, they might not represent the overall optimum with regard to the total cost of ownership.
Technical Paper

Functional Integration as Key for Affordable Electrified Passenger Car Powertrains

2013-01-09
2013-26-0067
Further fuel efficiency improvements are mandatory in order to achieve the CO2 emission limits envisaged in the future. Electrification of the powertrain is seen as one of the key technologies to achieve these future goals. However, electrification of the power train typically goes with a massive cost increase of the overall system itself which is especially crucial for cost sensitive markets like India. AVL's approach to cost reduction for comparable performance and fuel consumption target values is an integration of functions. This paper demonstrates that, through a deeper interaction of the single powertrain components, further fuel efficiency optimization may be gained. System optimization at a powertrain level enables the achievement of future powertrain targets with respect to fuel efficiency and performance with only minimal and reduced requirements at a component level (i.e. combustion engine, electric drive, transmission and battery).
X