Refine Your Search

Search Results

Viewing 1 to 11 of 11
Journal Article

Heavy Duty Particle Measurement Programme (PMP): Exploratory Work for the Definition of the Test Protocol

2009-06-15
2009-01-1767
The heavy duty Particle Measurement Programme (PMP) inter-laboratory exercise consists of three parts: 1) the exploratory work to refine the measurement protocol, 2) the validation exercise where each lab will measure the emissions of a “golden” engine with two “golden” particle number systems simultaneously sampling from full and partial flow dilution systems, and 3) the round-robin where the emissions of a “reference” engine will be determined with a lab’s own particle number instrumentation. This paper presents the results of the exploratory work and describes the final protocol for testing in the validation exercise (and round robin) along with the necessary facility modifications required for compliance with the protocol. Key aspects of the protocol (e.g. filter material, flow rates at the full and partial flow systems, the pre-conditioning etc.) are explained and justified.
Journal Article

Theoretical Investigation of Volatile Removal Efficiency of Particle Number Measurement Systems

2010-04-12
2010-01-1304
Euro 5/6 light-duty vehicle emissions regulation introduced non-volatile particle number emission measurements. The particle number measurement system consists of a volatile removal unit followed by a particle number counter with a 50% cut-point diameter at 23 nm. The volatile removal unit must achieve a >99% concentration reduction of a monodisperse aerosol of tetracontane (CH 3 (CH 2 ) 38 CH 3 ) particles of diameter ≥30 nm with inlet concentration ≥10 4 cm −3 . In this paper the evaporation of tetracontane particles in the volatile removal unit is investigated theoretically. The temperature and the residence time in the evaporation tube are discussed, as well as the possibility of nucleation events of evaporated particles at the exit of the evaporation tube. In addition, sulfuric acid nucleation at the evaporation tube exit is analyzed. Theoretical calculations are, finally, compared to experimental data.
Technical Paper

On-Road Emissions of Euro 6d-TEMP Vehicles: Consequences of the Entry into Force of the RDE Regulation in Europe

2020-09-15
2020-01-2219
Human health and the environment are heavily impacted by air pollution. Air quality standards for Nitrogen dioxide (NO2) and particulate matter (PM) are commonly exceeded in Europe, particularly in urban areas with high density of traffic. Road transport contributed to 39% of NOx emissions, and 11% of PM emissions in the European Union (EU) in 2017. Measurements with Portable Emissions Measurement Systems (PEMS) showed that most Euro 5 and Euro 6b diesel vehicles emitted significantly more NOx on the road than their permissible limit in the laboratory type-approval test. In that context, EU Real Driving Emissions (EU-RDE) regulation aims at securing low on-road emissions of light duty vehicles under normal conditions of use. This paper assesses the tailpipe emissions performance of Euro 6d-TEMP gasoline and diesel passenger cars, type-approved after the entry into force of the RDE regulation in September 2017.
Journal Article

Particle Emission Measurements from L-Category Vehicles

2015-09-06
2015-24-2512
In 2011 a particle number (PN) limit was introduced in the European Union's vehicle exhaust legislation for diesel passenger cars. The PN method requires measurement of solid particles (i.e. those that do not evaporate at 350 °C) with diameters above 23 nm. In 2013 the same approach was introduced for heavy duty engines and in 2014 for gasoline direct injection vehicles. This decision was based on a long evaluation that concluded that there is no significant sub-23 nm fraction for these technologies. In this paper we examine the suitability of the current PN method for L-category vehicles (two- or three-wheel vehicles and quadri-cycles). Emission levels of 5 mopeds, 9 motorcycles, 2 tricycles (one of them diesel) and 1 quad are presented. Special attention is given to sub-23 nm emission levels. The investigation was conducted with PN legislation compliant systems with particle counters measuring above 23 nm and 10 nm.
Journal Article

Sampling of Non-Volatile Vehicle Exhaust Particles: A Simplified Guide

2012-04-16
2012-01-0443
Recently, a particle number (PN) limit was introduced in the European light-duty vehicles legislation. The legislation requires measurement of PN, and particulate mass (PM), from the full dilution tunnel with constant volume sampling (CVS). Furthermore, PN measurements will be introduced in the next stage of the European Heavy-Duty regulation. Heavy-duty engine certification can be done either from the CVS or from a partial flow dilution system (PFDS). For research and development purposes, though, measurements are often conducted from the raw exhaust, thereby avoiding the high installation costs of CVS and PFDS. Although for legislative measurements requirements exist regarding sampling and transport of the aerosol sample, such requirements do not necessarily apply for raw exhaust measurements. Thus, measurement differences are often observed depending on where in the experimental set up sampling occurs.
Journal Article

Overview of Soot Emission Measurements Instrumentation: From Smoke and Filter Mass to Particle Number

2013-03-25
2013-01-0138
Particulate emissions cause adverse health effects and for this reason they are regulated since the 80s. Vehicle regulations cover particulate emission measurements of a model before its sale, known as type approval or homologation. For heavy-duty engines the emissions are measured on an engine dynamometer with steady state points and transient cycles. For light-duty vehicles (i.e. the full power train) the particulate emissions are assessed on a chassis dynamometer. The measurement of particulate emissions is conducted either by diluting the whole exhaust in a dilution tunnel with constant volume sampling or by extracting a small proportional part of the exhaust gas and diluting it. Particulate emissions are measured by passing part of the diluted exhaust aerosol through a filter paper. The increase of the weight of the filter is used to calculate the particulate matter mass (PM) emissions.
Technical Paper

Accuracy of Particle Number Measurements from Partial Flow Dilution Systems

2011-09-11
2011-24-0207
The measurement of the particle number (PN) concentration of non-volatile particles ≻23 nm was introduced in the light-duty vehicles regulation; the heavy-duty regulation followed. Based on the findings of the Particle Measurement Program (PMP), heavy-duty inter-laboratory exercise, the PN concentration measurement can be conducted either from the full dilution tunnel with constant volume sampling (CVS) or from the partial flow dilution system (PFDS). However, there are no other studies that investigate whether the PN results from the two systems are equivalent. In addition, even the PMP study never investigated the uncertainty that is introduced at the final result from the extraction of a flow by a PN system from the PFDS. In this work we investigate the uncertainty for the three possible cases, i.e., considering a constant extracted flow from the PFDS, sending a signal with 1 Hz frequency to the PFDS, or feeding back the extracted flow to the PFDS.
Technical Paper

Feasibility of Particulate Mass and Number Measurement with Portable Emission Measurement Systems (PEMS) for In-Use Testing

2011-09-11
2011-24-0199
Different particulate mass (PM) portable emission measurement systems (PEMS) were evaluated in the lab with three heavy-duty diesel engines which cover a wide range of particle emission levels. For the two engines without Diesel Particulate Filters (DPF) the proportional partial flow dilution systems SPC-472, OBS-TRPM, and micro-PSS measured 15% lower PM than the full dilution tunnel (CVS). The micro soot sensor (MSS), which measures soot in real time, measured 35% lower. For the DPF-equipped engine, where the emissions were in the order of 2 mg/kWh, the systems had differences from the CVS higher than 50%. For on-board testing a real-time sensor is necessary to convert the gravimetric (filter)-based PM to second-by-second mass emissions. The detection limit of the sensor, the particle property it measures (e.g., number, surface area or mass, volatiles or non-volatiles) and its calibration affect the estimated real-time mass emissions.
Technical Paper

Evaluation of Portable Number Emission Systems for Heavy-Duty Applications under Steady State and Transient Vehicle Operation Conditions on a Chassis Dynamometer

2018-04-03
2018-01-0348
The European Commission plans to introduce a (solid) particle number (PN) emission limit for type approval and in-service conformity (ISC) by the end of 2018 (Euro VI d) using PEMS (Portable Emission Measurement System) tests on heavy duty vehicles on the road. Performance, measurement accuracy and sensitivity of several on-board particle counters for heavy duty applications have not been tested yet in parallel on a chassis dyno with Euro VI vehicle (N3-class, 12.8 l). The PN PEMS examined were CPC (Condensation Particle Counter) and DC (Diffusion Charger) based. Evaluation was conducted at different ambient temperatures from −7 °C to 35 °C while running different test cycles: WHVC (World Harmonized Vehicle Cycle), steady state engine operation, active regeneration and ISC-tests. A particle number system following the current heavy duty regulation requirement and recommendations of the Particle Measurement Program (PMP) served as reference (PMP_TP).
Technical Paper

A Technical Overview of Particulate Exhaust Emissions in the Post-RDE Era

2022-08-30
2022-01-1021
The subject of exhaust particulate emissions from road vehicles continues to gain attention and further, more stringent legislative demands are expected in this area. While the European Union has been at the forefront in recent decades, other jurisdictions are making progress towards more comprehensive control and limitation of exhaust particulate. This technical overview examines past, current and likely future (Euro 7) legislative requirements and also presents sample results from a range of vehicle types, in order to make comparisons and discuss the impact of expected regulatory updates. The impacts of powertrain trends, including hybridization, on exhaust particulate emissions and their control are briefly analyzed. Regulatory trends including the intention to move the lower boundary of the size range considered from 23 nm to 10 nm and the elimination of fuel- and technology-specific limits on particulate emissions are discussed and their implications analyzed.
Journal Article

Development of Measurement Methodology for Sub 23 nm Particle Number (PN) Measurements

2020-09-15
2020-01-2211
A proposal for sub-23 nm Solid Particle Number (SPN) measurement method was developed by the Particle Measurement Programme (PMP) group, based on the current SPN measurement method. In the proposal, a Particle Number Counter (PNC) having (65 ± 15)% counting efficiency at 10 nm and >90% at 15 nm (PNC10) replaces the current regulation PNC efficiency of 50±12% at 23 nm and >90% at 41 nm. Additionally, a catalytically active evaporation tube (CS) is required for sub-23 nm measurement method instead of the non-reactive evaporation tube (ET) of the current regulation. Here experimental work carried out at the JRC to address the issues of sub-23 nm SPN-measurement method is presented. The PNC10 was shown to be less dependent on the particle material than the PNC23, thus soot-like particles are still allowed for PNC-calibration. The high charging probability of soot-like particles was shown to have a low effect on PNC calibration uncertainties.
X