Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Design Analysis of High Power Density Additively Manufactured Induction Motor

2016-09-20
2016-01-2061
Induction machines (IM) are considered work horse for industrial applications due to their rugged, reliable and inexpensive nature; however, their low power density restricts their use in volume and weight limited environments such as an aerospace, traction and propulsion applications. Given recent advancements in additive manufacturing technologies, this paper presents opportunity to improve power density of induction machines by taking advantage of higher slot fill factor (SFF) (defined as ratio of bare copper area to slot area) is explored. Increase in SFF is achieved by deposition of copper in much more compact way than conventional manufacturing methods of winding in electrical machines. Thus a design tradeoff study for an induction motor with improved SFF is essential to identify and highlight the potentials of IM for high power density applications and is elaborated in this paper.
Journal Article

Enabling Flex Fuel Vehicle Emissions Testing – Test Cell Modifications and Data Improvements

2009-04-20
2009-01-1523
The challenges of flex-fuel vehicle (FFV) emissions measurements have recently come to the forefront for the emissions testing community. The proliferation of ethanol blended gasoline in fractions as high as 85% has placed a new challenge in the path of accurate measures of NMHC and NMOG emissions. Test methods need modification to cope with excess amounts of water in the exhaust, assure transfer and capture of oxygenated compounds to integrated measurement systems (impinger and cartridge measurements) and provide modal emission rates of oxygenated species. Current test methods fall short of addressing these challenges. This presentation will discuss the challenges to FFV testing, modifications made to Ford Motor Company’s Vehicle Emissions Research Laboratory test cells, and demonstrate the improvements in recovery of oxygenated species from the vehicle exhaust system for both regulatory measurements and development measurements.
Journal Article

Determination of PEMS Measurement Allowances for Gaseous Emissions Regulated Under the Heavy-Duty Diesel Engine In-Use Testing Program: Part 1 – Project Overview and PEMS Evaluation Procedures

2009-04-20
2009-01-0940
Under the U.S. Environmental Protection Agency's (EPA's) Heavy-Duty In-Use Testing (HDIUT) program, emission of non-methane hydrocarbons (NMHC), carbon monoxide (CO), and oxides of nitrogen (NOx) have been regulated using Portable Emissions Measurement Systems (PEMS) during in-use field operation for heavy-duty on-highway diesel engines with 2007 or later model year designations. As directed by the EPA, the Engine Manufacturers Association (EMA), and the California Air Resources Board (CARB), additive emission measurement accuracy margins (measurement allowances) were experimentally determined for HDIUT to account for the measurement differences between laboratory testing with laboratory grade equipment and in-use testing with PEMS. As part of a three-paper series, this paper summarizes the HDIUT measurement allowance program while focusing on the laboratory evaluations of the Sensors Inc. SEMTECH-DS PEMS.
Journal Article

Flying Test Bed Performance Testing of High-Bypass-Ratio Turbofans

2009-11-10
2009-01-3133
The commercial turbofan trend of increasing bypass ratio and decreasing fan pressure ratio has seen its latest market entry in Pratt & Whitney's PurePower™ product line, which will power regional aircraft for the Bombardier and Mitsubishi corporations, starting in 2013. The high-bypass-ratio, low-fan-pressure-ratio trend, which is aimed at diminishing noise while increasing propulsive efficiency, combines with contemporary business factors including the escalating cost of testing and limited availability of simulated altitude test sites to pose formidable challenges for engine certification and performance validation. Most fundamentally, high bypass ratio and low fan pressure ratio drive increased gross-to-net thrust ratio and decreased fan temperature rise, magnifying by a factor of two or more the sensitivity of in-flight thrust and low spool efficiency to errors of measurement and assumption, i.e., physical modeling.
Journal Article

Experimental Procedure for Measuring the Energy Consumption of IC Engine Lubricating Pumps during a NEDC Driving Cycle

2009-06-15
2009-01-1919
The paper presents an experimental procedure for comparing different families of IC Engine lubricating pumps in terms of total consumed energy in a NEDC driving cycle. Measures are performed on a test rig able to reproduce the oil temperature profile, the lubrication circuit permeability and its variation during the engine warm-up. The pump under test is driven by a variable speed electric motor supplying the engine velocity profile of the driving cycle. The load on the pump is generated by means of a variable restrictor controlled in a closed loop by a proper combination of speed, temperature, flow rate and pressure signals in order to replicate the typical permeability of the lubricating circuit.
Journal Article

Drivability Analysis of Heavy Goods Vehicles

2010-10-05
2010-01-1981
The paper presents linear and non-linear driveline models for Heavy Goods Vehicles (HGVs) in order to evaluate the main parameters for optimal tuning, when considering the drivability. The implemented models consider the linear and non-linear driveline dynamics, including the effect of the engine inertia, the clutch damper, the driveshaft, the half-shafts and the tires. Sensitivity analyses are carried out for each driveline component during tip-in maneuvers. The paper also analyses the overall frequency response using Bode diagrams and natural frequencies. It is demonstrated that the most basic model capable of taking into account the first order dynamics of the driveline must consider the moments of inertia of the engine, the transmission and the wheels, the stiffness and the damping properties of the clutch damper, driveshaft and half-shafts, and the tires (which link the wheel to the equivalent inertia of the vehicle).
Journal Article

Advances of Virtual Testing and Hybrid Simulation in Automotive Performance and Durability Evaluation

2011-04-12
2011-01-0029
Virtual testing is a method that simulates lab testing using multi-body dynamic analysis software. The main advantages of this approach include that the design can be evaluated before a prototype is available and virtual testing results can be easily validated by subsequent physical testing. The disadvantage is that accurate specimen models are sometimes hard to obtain since nonlinear components such as tires, bushings, dampers, and engine mounts are hard to model. Therefore, virtual testing accuracy varies significantly. The typical virtual rigs include tire and spindle coupled test rigs for full vehicle tests and multi-axis shaker tables for component tests. Hybrid simulation combines physical and virtual components, inputs and constraints to create a composite simulation system. Hybrid simulation enables the hard to model components to be tested in the lab.
Journal Article

A Mixed-Mode Fracture Criterion for AHSS Cracking Prediction at Large Strain

2011-04-12
2011-01-0007
Predicting AHSS cracking during crash events and forming processes is an enabling technology for AHSS application. Several fracture criteria including MatFEM and Modified Mohr-Coulomb Criterion were developed recently. However, none of them are designed to cover more fracture modes such as bending fracture and tearing fracture with initial damage. A mixed-mode fracture criterion (MMFC) is proposed and developed to capture multiple fracture modes including in-plane shearing fracture, cross-thickness shearing fracture with bending effect and tearing fracture with initial damage. The associated calibration procedure for this criterion is developed. The criterion is implemented in a commercial FEA code and several lab validations are conducted. The results show its promising potential to predict AHSS cracking at large strain conditions.
Journal Article

Life-Cycle Environmental Impact of Michelin Tweel® Tire for Passenger Vehicles

2011-04-12
2011-01-0093
Recently Michelin has been developing a new airless, integrated tire and wheel combination called the Tweel® tire. The Tweel tire aims at performance levels beyond those possible with conventional pneumatic technology because of its shear band design, added suspension, and potentially decreased rolling resistance. In this paper, we will focus on the environmental impact of the Tweel tire during its life-cycle from manufacturing, through use and disposal. Since the Tweel tire is currently still in the research phase and is not manufactured and used on a large scale, there are uncertainties with respect to end-of-life scenarios and rolling resistance estimates that will affect the LCA. Nevertheless, some preliminary conclusions of the Tweel tire's environmental performance in comparison to a conventional radial tire can be drawn.
Journal Article

Effects of Material Properties on Static Load-Deflection and Vibration of a Non-Pneumatic Tire During High-Speed Rolling

2011-04-12
2011-01-0101
The Michelin Tweel tire structure has recently been developed as an innovative non-pneumatic tire which has potential for improved handling, grip, comfort, low energy loss when impacting obstacles and reduced rolling resistance when compared to a traditional pneumatic tire. One of the potential sources of vibration during rolling of a non-pneumatic tire is the buckling phenomenon and snapping back of the spokes in tension when they enter and exit the contact zone. Another source of noise was hypothesized due to a flower petal ring vibration effect due to discrete spoke interaction with the ring and contact with the ground during rolling as the spokes cycle between tension and compression. Transmission of vibration between the ground force, ring and spokes to the hub was also considered to be a significant contributor to vibration and noise characteristics of the Tweel.
Journal Article

Tire Sensors for the Measurement of Slip Angle and Friction Coefficient and Their Use in Stability Control Systems

2011-04-12
2011-01-0095
Intelligent tires are envisioned to be an important part of the future vehicle control systems and the three dimensional wireless MEMS accelerometers embedded inside the tire stand out as a promising candidate for the development of intelligent tires. The first part of the paper focuses on accelerometer based tire sensors for the estimation of slip angle and tire/road friction coefficient. We use a simple tire finite element model to generate lateral, tangential and radial tire accelerations for a fixed load and slip angle. The profiles are validated by using experimental data. The simulated acceleration profiles are used for the estimation of slip angle and tire/road friction coefficient. We present the estimation algorithms, promising simulative results and output sensitivities studies focused on the effects of changes in normal load, tire pressure and vehicle velocity.
Journal Article

Practical Approach to Develop Low Cost, Energy Efficient Cabin Heating for Extreme Cold Operating Environment

2011-04-12
2011-01-0132
In cold climatic regions (25°C below zero) thermal comfort inside vehicle cabin plays a vital role for safety of driver and crew members. This comfortable and safe environment can be achieved either by utilizing available heat of engine coolant in conjunction with optimized in cab air circulation or by deploying more costly options such as auxiliary heaters, e.g., Fuel Fired, Positive Temperature Coefficient heaters. The typical vehicle cabin heating system effectiveness depends on optimized warm/hot air discharge through instrument panel and foot vents, air directivity to occupant's chest and foot zones and overall air flow distribution inside the vehicle cabin. On engine side it depends on engine coolant warm up and flow rate, coolant pipe routing, coolant leakage through engine thermostat and heater core construction and capacity.
Journal Article

Effects of Fuel Type on Dual SCR Aftertreatment for Lean NOx Reduction

2009-11-02
2009-01-2818
Global demand for alternative fuels to combat rising energy costs has sparked a renewed interest in catalysts that can effectively remediate NOx emissions resulting from combustion of a range of HC based fuels. Because many of these new engine technologies rely on lean operating environments to produce efficient power, the resulting emissions are also present in a lean atmosphere. While HCs are easily controlled in such environments, achieving high NOx conversion to N2 has continued to elude fully satisfactory solution. Until recently, most approaches have relied on catalysts with precious metals to either store NOx and subsequently release it as N2 under rich conditions, or use NH3 SCR catalysts with urea injection to reduce NOx under lean conditions. However, new improvements in Ag based technologies also look very promising for NOx reduction in lean environments.
Journal Article

Deposit Formation in Urea-SCR Systems

2009-11-02
2009-01-2780
Formation of urea injection related deposits in a heavy-duty urea-SCR system was studied using an engine lab setup. The exhaust system was instrumented with thermocouples to track temperature changes caused by the liquid spray. Impact of operating parameters (exhaust and ambient temperature, urea solution injection rate) and system design modification (insulation, wiremesh insert) on the temperature profiles and deposit quantities was studied. Deposits were found in all tests conducted under typical exhaust temperatures. Deposition rate increased with lower exhaust and ambient temperature, and with higher injection rate. Mixer insulation and wiremesh upstream of the mixer reduced the deposits.
Journal Article

Development of Driving Control System Based on Optimal Distribution for a 6WD/6WS Vehicle

2010-04-12
2010-01-0091
This paper describes a driving controller to improve vehicle lateral stability and maneuverability for a six wheel driving / six wheel steering (6WD/6WS) vehicle. The driving controller consists of upper and lower level controller. The upper level controller based on sliding control theory determines front, middle steering angle, additional net yaw moment and longitudinal net force according to reference velocity and steering of a manual driving, remote control and autonomous controller. The lower level controller takes desired longitudinal net force, yaw moment and tire force information as an input and determines additional front steering angle and distributed longitudinal tire force on each wheel. This controller is based on optimal distribution control and has considered the friction circle related to vertical tire force and friction coefficient acting on the road and tire.
Journal Article

Advancement of Vehicle Dynamics Control with Monitoring the Tire Rolling Environment

2010-04-12
2010-01-0108
One of the most important challenges for electronic stability control (ESC) systems is the identification and monitoring of tire rolling environment, especially actual tire-road friction parameters. The presented research considers an advanced variant of the ESC system deducing the mentioned factors based on intelligent methods as fuzzy sets. The paper includes: Overview of key issues in prototyping the algorithms of Electronic Stability Control. Case study for vehicle model. Procedures for monitoring of tire rolling environment: theoretical backgrounds, computing methods, fuzzy input and output variables, fuzzy inference systems, interface with ESC algorithm. Case study for ESC control algorithm. Examples of simulation using Hardware-in-the-Loop procedures. The proposed approach can be widely used for the next-generation of ESC devices having the close integration with Intelligent Transport Systems.
Journal Article

Handling and Ride Performance Sensitivity Analysis for a Truck-Trailer Combination

2010-04-12
2010-01-0642
A truck-trailer combination is modeled using ADAMS/Car from MSC Software for handling and ride comfort performance simulations. The handling events include a double lane change and lateral roll stability. The ride comfort performance events include several sized half-rounds and various RMS courses. The variables for handling performance evaluation include lateral acceleration, roll angles and tire patch normal loads. The variables for ride performance evaluation are absorbed power and peak acceleration. This study considers the trailer spring stiffness, anti-roll bar and jounce bumper gap as the design variables. Through DOE simulations, we derived the response surface models of various performance variables so that we could consider the performance sensitivities to the design variables.
Journal Article

Robust Observation of Tractor-trailer Vertical Forces Using Inverse Model and Exact Differentiator

2010-04-12
2010-01-0637
In this paper, we are interested in developing a robust tire-force estimator for heavy duty vehicles. We use a combined model of the articulated vehicle: a yaw plane model for the chassis motion and a vertical plane model for the axles. In the proposed method, we make use of the on-board available sensors to which low-cost sensors are added. In order to optimize the sensors configuration, a robust exact differentiator is used in order to obtain accelerations from the measured velocities. Once the differentiation is obtained, the model is inverted to determine the unknown input forces. The approach is validated by comparing the estimation results to those given by the software simulator prosper .
Journal Article

A Method for Vibration and Harshness Analysis Based on Indoor Testing of Automotive Suspension Systems

2010-04-12
2010-01-0639
The paper presents a method for the indoor testing of road vehicle suspension systems. A suspension is positioned on a rotating drum which is located in the Laboratory for the Safety of Transport at Politecnico di Milano. Special six-axis load cells have been designed and used for measuring the forces/moments acting at each suspension-chassis joints. The forces/moments, wheel accelerations, displacements are measured up to 100 Hz. Two different types of test can be performed. The tire/wheel unbalance effect on the suspension system behavior (Vibration and Harshness, VH) has been analyzed by testing the suspension system from zero to the vehicle maximum speed on a flat surface and by monitoring the forces transmitted to the chassis. In the second kind of test, the suspension system has been excited as the wheel passes over different cleats fixed on the drum.
Journal Article

Symbolic Formulation of Multibody Dynamic Equations for Wheeled Vehicle Systems on Three-Dimensional Roads

2010-04-12
2010-01-0719
A method to improve the computational efficiency of analyzing wheeled vehicle systems on three-dimensional (3-D) roads has been developed. This was accomplished by creating a technique to incorporate the tire on a 3-D road in a multibody dynamics model of the vehicle with an approach that formulates the governing equations using symbolic formulation. For general handling analysis performed on the vehicle, the tire forces and moments are determined using a tire model that represents the tire as a set of mathematical expressions. Since these expressions need numerical values to determine the forces and moments, a symbolic solution does not exist. Therefore, the evaluation of the tire forces and moments needs to be done during simulation. However, symbolic operations can be used when the governing equations are formulated to develop an efficient method to evaluate these forces.
X