Refine Your Search

Search Results

Viewing 1 to 12 of 12
Journal Article

An Accurate Modeling for Permanent Magnet Synchronous Wheel Motor Including Iron Loss

2014-04-01
2014-01-1867
For high torque permanent magnet wheel motor, this paper describes an experimental research method to optimize and identify the motor parameters based on the results of offline calculation. In order to improve the accuracy of motor parameters identification, the motor model considering the affect of iron loss was established, and the motor parameters were identified using genetic algorithm (GA). Based on this, parameters validation experiment was performed. The results show that: parameters obtained by this method can be used to describe the steady-state and transient-state response of permanent magnet synchronous motors accurately.
Journal Article

UniTire Model for Tire Forces and Moments under Combined Slip Conditions with Anisotropic Tire Slip Stiffness

2013-09-24
2013-01-2362
The tire mechanics characteristics are essential for analysis, simulation and control of vehicle dynamics. This paper develops the UniTire model for tire forces and moments under combined slip conditions with anisotropic tire slip stiffness. The anisotropy of tire slip stiffness, which means the difference of tire longitudinal slip stiffness and cornering stiffness, will cause that the direction of tire resultant shear stress in adhesion region is different from that in sliding region. Eventually the tire forces and moments under combined slip conditions will be influenced obviously. The author has proposed a “direction factor” before to modify the direction of resultant force in the tire-road contact patch, which can describe tire forces at cornering/braking combination accurately. However, the aligning moments which are very complicated under combined slip conditions are not considered in previous analysis.
Technical Paper

Simulations of Tire Cornering Properties in Non-Steady State Conditions

1998-02-01
980254
Simulations of tire cornering properties with small-amplitude lateral inputs are carried out in non-steady state conditions. The simulation algorithm is derived and the discrete expressions are presented in detail. Based on the simulations, lateral force and aligning moment can be calculated numerically with time-varying yaw angle and lateral displacement as inputs in spatial domain. The flexibility of both tread and carcass along with tire width is taken into account effectively in the simulations, in which the flexibility of carcass includes translating, bending and twisting flexibility. The simulations in non-dimensional form are associated with four tire structure parameters only, which are non-dimensional parameters reflecting the characteristics of tire stiffness, tire width and contact length. Simulation results are validated by test data from step lateral inputs tests. Several typical simulation results are provided.
Technical Paper

An Empirical Tire Model for Non-Steady State Side Slip Properties

2003-11-10
2003-01-3414
In this paper, on the basis of the extant semi-empirical tire models of non-steady state with pure yaw angle input and pure side slip angle input, two empirical tire models of non-steady state side slip properties are established, one is pure yaw angle input, the other is pure side slip angle input, and both of them have been verified by test data. These two models can be used to approximately express tire force within low frequency. They have their own advantages, and make up for the disadvantages of existing tire models. They provide more choice for the simulation of vehicle dynamics.
Technical Paper

Tire Roller Contact Model for Simulation of Vehicle Vibration Input

1993-11-01
932008
To improve the quantitative accuracy of vehicle vibration studies, a roller contact tire model with the geometric filtering concept and a method to determine the effective road input are proposed. Computer simulation with the 13 DOF vehicle model for a light truck, based on two different tire models, and relevant outdoor tests for measuring the vehicle accelerations of both sprung and unsprung masses are presented. Comparisons of test data and simulation results show that the roller contact tire model renders much better simulation accuracy than the single point contact tire model. It is concluded that the roller contact tire model is a powerful concept which acts as a geometric filter, giving a simple method to calculate the enveloping effects of tires and the effective road elevation input.
Technical Paper

A Non-steady and Non-linear Tire Model Under Large Lateral Slip Condition

2000-03-06
2000-01-0358
The objective of this study is to develop a non-steady & non-linear tire model for vehicle dynamic simulation and control for extreme lateral slip condition. This model is provided in a semi-analytical form based on the theoretical non-steady state model, presented at 2nd IAVSD Tyre Conference, Feb. 1997[6]. The tire model is based on a quasi-steady state concept, which generates the dynamic forces and moment according to the dynamic effective slip ratio cooperating with the Unified Semi-Empirical Tire Model for Steady State. Satisfying the theoretical boundary conditions at two sides (lowest & highest) in frequency domain, the tire model is capable of describing the transient force & moment characteristics of tires in higher frequency range, Comparing with the “Linear Approximation” model, presented at 4th AVEC Conference, Sept. 1998[4].
Technical Paper

A Unified Semi-Empirical Tire Model with HigherAccuracy and Less Parameters

1999-03-01
1999-01-0785
A unified tire model with non-isotropy of friction and arbitrary contact pressure distribution is presented as a foundation to study the key features of a reasonable expression of tire shear force and alignment torque under combined slip conditions. The effects of contact pressure distribution on tire mechanical characteristics are analyzed. A unified semi-empirical tire model with convenience in dynamics simulation is recommended. For determining the model parameters, a series of simple expressions that satisfy the boundary conditions are proposed and a new global fitting method for tire data processing is employed. Based on the improved semi empirical model, the USPA software is developed. This software reduces the modeling time from the tire data to a practical tire model and allows various tire characteristics analyses. Some experimental validations are shown.
Technical Paper

A Study on Force Distribution Control for the Electric Vehicle with Four In-wheel motors

2014-09-30
2014-01-2379
This paper presents an ideal force distribution control method for the electric vehicle, which is equipped with four independently in-wheel motors, in order to improve the lateral stability of the vehicle. According to the friction circle of tyre force, the ideal distribution control method can be obtained to make the front and rear wheels reach the adhesion limit at the same time in different conditions. Based on this, the force re-distributed control is applied to enhance the security of vehicle when the in-wheel motor is in the failure mode. The simulation result shows that: the force distributed method can not only improves the lateral stability of the vehicle but also enhances the vehicle safety.
Technical Paper

Experimental Research on the Pressure Following Control of Electro-Hydraulic Braking System

2014-04-01
2014-01-0848
Pressure following control is the basic function of Electro-Hydraulic Braking system (EHB), which is also the key technology of stability control system and regenerative braking system for hybrid and electric vehicles. Experimental research is an important method for the control and application of EHB. This paper describes a method to test and control the EHB system through experiment on the Hardware-in-the-loop (HIL) test bench and wheel motor electric vehicle. First, the HIL test bench was established, in which the EHB was tested, including the characteristics of solenoid valves and motor. Then the wheel cylinder pressure was controlled to follow the specific signal input and the master cylinder pressure. Based on this, EHB and the pressure following control method were applied to the wheel motor electric vehicle. The results show that the braking pressure can follow the driver's braking intention to realize the conventional braking function of electric vehicles.
Technical Paper

Optimized Torque Distribution Algorithm to Improve the Energy Efficiency of 4WD Electric Vehicle

2014-09-30
2014-01-2374
This paper presents a torque distribution algorithm to improve the energy efficiency of four-wheel-drive (4WD) electric vehicles with PMSM hub motors. In order to optimize the torque distribution method, at first the motor model considering the affect of iron loss and the loss model of multi-motors drive system of 4WD electric vehicle with PMSM hub motors, which operate at straight-line condition, are established. Besides, realize the online identification of motor parameters based on the MARS, which is important for updating the loss model parameters of the motor drive system. By doing this, the ideal torque distribution ratio can be obtained from the loss model in real-time. The simulation result using different distribution algorithms shows that the optimized torque distribution algorithm based on the loss model can be useful for improving the energy efficiency.
Technical Paper

Stability Control of Four-Wheel-Drive Electric Vehicle with Electro-Hydraulic Braking System

2014-09-28
2014-01-2539
Four-wheel-drive electric vehicles (4WD Evs) utilize in-wheel electric motors and Electro-Hydraulic Braking system (EHB). Then, all wheels torque can be controlled independently, and the braking pressure can be controlled more accurately and more fast than conventional braking system. Because of these advantages, 4WD Evs have potential applications in control engineering. In this paper, the in-wheel electric motors and EHB are applied as actuators in the vehicle stability control system. Based on the Direct Yaw-moment Control (DYC), the optimized wheel force distribution is given, and the coordination control of the hydraulic braking and the motor braking torque is considered. Then the EHB hardware-in-the-loop test bench is established in order to verify the effectiveness of the vehicle stability control algorithm through experiments.
Technical Paper

Research on Closed-Loop Comprehensive Evaluation Method of Vehicle Handling and Stability

2000-03-06
2000-01-0694
A closed-loop comprehensive evaluation and a test method for vehicle handling and stability have been studied by using development driving simulator. Simulator test scheme has been designed and carried out with 14 vehicle configurations, and subjective evaluation has been made for easy handling of vehicle by drivers. A closed-loop comprehensive evaluation index has been put forward considering the factors affecting vehicle handling and stability. The reliability of the index has been validated by driver's subjective evaluation. A driver/vehicle/ road closed-loop system model has been established, and the theoretical predictive evaluation has been carried out with 14 vehicle configurations. Simulation showed that similar result for both theoretical predictive evaluation and subjective evaluation.
X