Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

State of the Art and Future Developments of Aluminum Radiators for Cars and Trucks

1993-04-01
931092
Aluminum has a number of features which make it superior to the other non-ferrous metals (copper and brass) normally used for radiators in the past. Apart from the low specific weight, there are additional advantages, such as outstanding heat conductivity, strength, corrosion resistance and convenient forming and processing qualities. Brazed aluminum radiators with flat tubes and louvered serpentine fins are used for high horsepower engines and/or in confined spaces, while mechanically assembled round tube or oval tube radiators are preferred for smaller engines and/or where there is sufficient space. The excellent field results with car radiators have led to the use of aluminum radiators in trucks as well. More than 10 million fluxless brazed flat tube radiators with serpentine fins have been manufactured by Behr since 1975. Serial production for trucks was started in 1988.
Technical Paper

The Aluminum Radiator for Heavy Duty Trucks

1999-11-15
1999-01-3721
The Aluminum radiator has a number of features that make it very attractive for vehicle applications in general. Superior durability and reliability in conjunction with its excellent specific values for costs, performance and weight warrant a favorable solution for Heavy Duty Trucks. Behr has been supplying Aluminum radiators for trucks in Europe for over 10 years and in North America for 4 years. This paper examines the results based on this long-term experience. It reviews the field experience compared to Copper/Brass radiators, examines design and mounting features as well as the manufacturing processes. Durability, external and internal corrosion resistance are emphasized as essential characteristics. A special focus is the thermodynamics of Aluminum radiators. The paper reviews methods to simulate the thermodynamic behavior of radiators and the progress in the specific performance, based on the development of improved radiator core matrices.
X