Refine Your Search

Topic

Search Results

Technical Paper

The Effects of Ceramic Coatings on Diesel Engine Performance and Exhaust Emissions

1991-02-01
910460
An experimental investigation of the effects of ceramic coatings on diesel engine performance and exhaust emissions was conducted. Tests were carried out over a range of engine speeds at full load for a standard metal piston and two pistons insulated with 0.5 mm and 1.0 mm thick ceramic coatings. The thinner (0.5 mm) ceramic coating resulted in improved performance over the baseline engine, with the gains being especially pronounced with decreasing engine speed. At 1000 rpm, the 0.5 mm ceramic coated piston produced 10% higher thermal efficiency than the metal piston. In contrast, the relatively thicker coating (1 mm), resulted in as much as 6% lower thermal efficiency compared to baseline. On the other hand, the insulated engines consistently presented an attractive picture in terms of their emissions characteristics. Due to the more complete combustion in the insulated configurations, exhaust CO levels were between 30% and 60% lower than baseline levels.
Technical Paper

Advances in High Temperature Components for the Adiabatic Engine

1991-02-01
910457
An advanced low heat rejection engine concept has been selected based on a trade-off between thermal insulating performance and available technology. The engine concept heat rejection performance is limited by available ring-liner tribology and requires cylinder liner cooling to control the piston top ring reversal temperature. This engine concept is composed of a titanium piston, headface plate and cylinder liner insert with thermal barrier coatings. Monolithic zirconia valve seat inserts, and thermal barrier coated valves and intake-exhaust ports complete the insulation package. The tribological system is composed of chrome oxide coated cylinder, M2 steel top piston ring, M2 steel valve guides, and an advanced polyol ester class lubricant.
Technical Paper

A Prototype Thin-Film Thermocouple for Transient Heat Transfer Measurements in Ceramic-Coated Combustion Chambers

1990-02-01
900691
A prototype chromel-alumel overlapping thin-film thermocouple (TFTC) has been developed for transient heat transfer measurements in ceramic-coated combustion chambers. The TFTC has been evaluated using various metallurgical techniques such as scanning electron microscopy, energy dispersive x-ray detection, and Auger electron spectroscopy. The sensor was calibrated against a standard thermocouple in ice, boiling water, and a furnace at 1000°C. The microstructural and chemical analysis of the thin-films showed the alumel film composition was very similar to the bulk material, while the chromel film varied slightly. An initial set of ceramic plug surface temperatures was taken while motoring and firing the engine at 1900 rpm to verify thermocouple operation. The data shows a 613 K mean temperature and a 55 K swing for the ceramic surface compared with a 493 K mean temperature and a 20 K swing for the metal surface at the same location.
Technical Paper

The Effect of Thin Ceramic Coatings on Spark-Ignition Engine Performance

1990-04-01
900903
An experimental study of the effects of thin ceramic thermal barrier coatings on the performance of a spark-ignited gasoline engine was conducted. A modified 2.5 liter GM engine with ceramic-coated pistons, liners, head, valves and ports was used. Experimental results obtained from the ceramic engine were compared with baseline metal engine data. It was shown that at low-speed part-load conditions encountered in typical driving cycles the ceramic engine could achieve up to 18% higher brake power and up to 10% lower specific fuel consumption. At wide open throttle conditions, the two engines exhibited similar characteristics, except at high speeds where the metal engine showed better performance at the expense of inferior fuel economy. The ceramic coating did not produce any observable knock in the engine and showed no significant wear at the conclusion of the testing phase.
Technical Paper

Control of a Multi-Cylinder HCCI Engine During Transient Operation by Modulating Residual Gas Fraction to Compensate for Wall Temperature Effects

2007-04-16
2007-01-0204
The thermal conditions of an engine structure, in particular the wall temperatures, have been shown to have a great effect on the HCCI engine combustion timing and burn rates through wall heat transfer, especially during transient operations. This study addresses the effects of thermal inertia on combustion in an HCCI engine. In this study, the control of combustion timing in an HCCI engine is achieved by modulating the residual gas fraction (RGF) while considering the wall temperatures. A multi-cylinder engine simulation with detailed geometry is carried out using a 1-D system model (GT-Power®) that is linked with Simulink®. The model includes a finite element wall temperature solver and is enhanced with original HCCI combustion and heat transfer models. Initially, the required residual gas fraction for optimal BSFC is determined for steady-state operation. The model is then used to derive a map of the sensitivity of optimal residual gas fraction to wall temperature excursions.
Technical Paper

Comparison of Diesel Oxidation Catalyst Performance on an Engine and a Gas Flow Reactor

2007-04-16
2007-01-0231
This paper analyzes and compares reactor and engine behavior of a diesel oxidation catalyst (DOC) in the presence of conventional diesel exhaust and low temperature premixed compression ignition (PCI) diesel exhaust. Surrogate exhaust mixtures of n-undecane (C11H24), ethene (C2H4), CO, O2, H2O, NO and N2 are defined for conventional and PCI combustion and used in the gas flow reactor tests. Both engine and reactor tests use a DOC containing platinum, palladium and a hydrocarbon storage component (zeolite). On both the engine and reactor, the composition of PCI exhaust increases light-off temperature relative to conventional combustion. However, while nominal conditions are similar, the catalyst behaves differently on the two experimental setups. The engine DOC shows higher initial apparent HC conversion efficiencies because the engine exhaust contains a higher fraction of trappable (i.e., high boiling point) HC.
Technical Paper

Thermal Barrier Coatings for High Output Turbocharged Diesel Engine

2007-04-16
2007-01-1442
Thermal barrier coatings (TBC) are perceived as enabling technology to increase low heat rejection (LHR) diesel engine performance and improve its longevity. The state of the art of thermal barrier coating is the plasma spray zirconia. In addition, other material systems have been investigated for the next generation of thermal barrier coatings. The purpose of this TBC program is to focus on developing binder systems with low thermal conductivity materials to improve the coating durability under high load and temperature cyclical conditions encountered in the real engine. Research and development (R&D) and analysis were conducted on aluminum alloy piston for high output turbocharged diesel engine coated with TBC.
Technical Paper

Modeling of Diesel Combustion and NO Emissions Based on a Modified Eddy Dissipation Concept

2004-03-08
2004-01-0107
This paper reports the development of a model of diesel combustion and NO emissions, based on a modified eddy dissipation concept (EDC), and its implementation into the KIVA-3V multidimensional simulation. The EDC model allows for more realistic representation of the thin sub-grid scale reaction zone as well as the small-scale molecular mixing processes. Realistic chemical kinetic mechanisms for n-heptane combustion and NOx formation processes are fully incorporated. A model based on the normalized fuel mass fraction is implemented to transition between ignition and combustion. The modeling approach has been validated by comparison with experimental data for a range of operating conditions. Predicted cylinder pressure and heat release rates agree well with measurements. The predictions for NO concentration show a consistent trend with experiments. Overall, the results demonstrate the improved capability of the model for predictions of the combustion process.
Technical Paper

Modeling HCCI Combustion With High Levels of Residual Gas Fraction - A Comparison of Two VVA Strategies

2003-10-27
2003-01-3220
Adjusting the Residual Gas Fraction (RGF) by means of Variable Valve Actuation (VVA) is a strong candidate for controlling the ignition timing in Homogeneous Charge Compression Ignition (HCCI) engines. However, at high levels of residual gas fraction, insufficient mixing can lead to the presence of considerable temperature and composition variations. This paper extends previous modeling efforts to include the effect of RGF distribution on the onset of ignition and the rate of combustion using a multi-dimensional fluid mechanics code (KIVA-3V) sequentially with a multi-zone code with detailed chemical kinetics. KIVA-3V is used to simulate the gas exchange processes, while the multi-zone code computes the combustion event. It is shown that under certain conditions the effect of composition stratification is significant and cannot be captured by a single-zone model or a multi-zone model using only temperature zones.
Technical Paper

Advanced Insulated Titanium Piston for Adiabatic Engine

1990-02-01
900623
A highly effective thermal insulating piston concept with high projected durability characteristics has been developed by means of computer aided modelling, thermal rig bench screening, and small-bore engine testing. The piston concept is composed of a relatively low thermal conductivity titanium alloy type 6242 structural material and a 1.25 mm thick slurry densified thermal barrier coating. The piston material, structural configuration, and detail design features were selected through computer aided modelling and qualified through small-bore engine testing. Screening of plasma sprayed thermal barrier coatings was performed on a simple thermal test rig and final selection of a system was made through small-bore engine testing.
Technical Paper

Combustion and Performance Characteristics of a Low Heat Rejection Engine

1993-03-01
930988
The purpose of this paper is to investigate combustion and performance characteristics for an advanced class of diesel engines which support future Army ground propulsion requirements of improved thermal efficiency, reduced system size and weight, and enhanced mobility. Advanced ground vehicle engine research represents a critical building block for future Army vehicles. Unique technology driven engines are essential to the development of compact, high-power density ground propulsion systems. Through an in-house analysis of technical opportunities in the vehicle ground propulsion area, a number of dramatic payoffs have been identified as being achievable. These payoffs require significant advances in various areas such as: optimized combustion, heat release phasing, and fluid flow/fuel spray interaction. These areas have been analyzed in a fundamental manner relative to conventional and low heat rejection “adiabatic” engines.
Technical Paper

100 Hour Endurance Testing of a High Output Adiabatic Diesel Engine

1994-03-01
940951
An advanced low heat rejection engine concept has successfully completed a 100 hour endurance test. The combustion chamber components were insulated with thermal barrier coatings. The engine components included a titanium piston, titanium headface plate, titanium cylinder liner insert, M2 steel valve guides and monolithic zirconia valve seat inserts. The tribological system was composed of a ceramic chrome oxide coated cylinder liner, chrome carbide coated piston rings and an advanced polyolester class lubricant. The top piston compression ring Included a novel design feature to provide self-cleaning of ring groove lubricant deposits to prevent ring face scuffing. The prototype test engine demonstrated 52 percent reduction in radiator heat rejection with reduced intake air aftercooling and strategic forced oil cooling.
Technical Paper

A High Temperature and High Pressure Evaporation Model for the KIVA-3 Code

1996-02-01
960629
A high pressure and high temperature evaporation model was implemented in the KIVA-3 multidimensional engine simulation. The most significant features of the new evaporation model are: the effects of Stefan flow on transfer rates are included; internal circulation is accounted using the effective conductivity model of Abramzon and Sirignano [1]; equilibrium composition is calculated at high pressures using a real gas equation of state; and properties are evaluated as functions of temperature, pressure and composition. The evaporation of a continuous spray of n-dodecane injected in a chamber pressurized with nitrogen gas was simulated using the two models. Predictions of the evaporation rate, the spray penetration and fuel vapor distribution by the two models were significantly different. The differences persisted over a range of ambient pressures and temperatures, injection velocities, initial droplet sizes and fuel volatilities.
Technical Paper

Analysis of Premixed Charge Compression Ignition Combustion With a Sequential Fluid Mechanics-Multizone Chemical Kinetics Model

2005-04-11
2005-01-0115
We have developed a methodology for analysis of Premixed Charge Compression Ignition (PCCI) engines that applies to conditions in which there is some stratification in the air-fuel distribution inside the cylinder at the time of combustion. The analysis methodology consists of two stages: first, a fluid mechanics code is used to determine temperature and equivalence ratio distributions as a function of crank angle, assuming motored conditions. The distribution information is then used for grouping the mass in the cylinder into a two-dimensional (temperature-equivalence ratio) array of zones. The zone information is then handed on to a detailed chemical kinetics model that calculates combustion, emissions and engine efficiency information. The methodology applies to situations where chemistry and fluid mechanics are weakly linked.
Technical Paper

Exploratory Development of Insulated Components for High Temperature Engines

1988-02-01
880191
Significant headway has recently been achieved in advanced high-temperature component design. Progress has been made in selecting a highly effective thermal insulating design composed of a titanium alloy piston with 1.0 mm thermal barrier coating which provides the same level of insulating effectiveness as a ductile iron piston with 2.5 mm coating. The low thermal conductivity of Titanium Alloy 6242 inherently provides a significant level of thermal resistance which effectively reduces the required coating thickness, reduces thermal stresses, and nearly eliminates coating thermal expansion mismatch. Other benefits of the titanium alloy piston include low weight and increased high temperature strength. Thermal rig testing has been completed on several plasma-sprayed zirconia coatings and a critical durability threshold thickness of 1.25 mm has been identified. In addition, zirconia coatings and chrome-oxide-densified Eirconia coatings have been screened in a small bore diesel engine.
Technical Paper

Thin Thermal Barrier Coatings for Engines

1989-02-01
890143
Contrary to the thick thermal barrier coating approach used in adiabatic diesel engines, the authors have investigated the merits of thin coatings. Transient heat transfer analysis indicates that the temperature swings experienced at combustion chamber surfaces depend primarily on material thermophysical properties, i.e., conductivity, density, and specific heat. Thus, cyclic temperature swings should be alike whether thick or thin (less than 0.25 mm) coatings are applied, Furthermore, thin coatings would lead to lower mean component temperatures and would be easier to apply than thick coatings. The thinly-coated engine concept offers several advantages including improved volumetric efficiency, lower cylinder liner wall temperatures, improved piston-liner tribological behavior, and improved erosion-corrosion resistance and thus greater component durability.
Technical Paper

High Temperature Engine Component Exploratory Design Development

1989-02-01
890296
Significant progress has been achieved in the development of advanced high-temperature, insulated, in-cylinder components for high-power-output miliraty diesel engines. Computer aided modeling and small-bore engine component testing have both been utilized extensively during the exploratory development process. Specific insulated optimal designs for the piston, cylinder headface, and cylinder liner have been identified. The designs all utilize thermal barrier coatings, titanium alloy, and interfacial air-gaps to provide thermal resistance. Finite element modeling including diesel cycle simulation has been utilized to screen and optimize material and design concepts relative to program objectives, while small-bore engine testing has been utilized to demonstrate component integrity. An improved slurry densified thermal barrier coating has been demonstrated by testing on a high temperature small-bore engine.
Technical Paper

Evaluation of Alternative Thermocouple Designs for Transient Heat Transfer Measurements in Metal and Ceramic Engines

1989-02-01
890571
Finite element models of various fast-response thermocouple designs have been developed. Due to the small differences in thermal properties between thermoelements and metal engine components, standard co-axial thermocouples can measure transient temperatures of metal components within an accuracy of 98%. However, these relatively small errors in total temperature measurement translate into as high as 30% errors in indicated peak-to-peak-temperature swings for iron surfaces. The transient swing errors result in up to 30% errors in peak heat flux rates to iron surfaces. These peak heat flux errors can be substantially larger if coaxial thermocouples are used for heat flux measurements in aluminum or ceramic surfaces. Increasing the thin film thickness is a compromise solution to reduce the discrepancy in peak heat flux measured with coaxial designs in metal engines. An alternative overlapping thin film thermocouple design has also been evaluated.
Technical Paper

Transient Heat Conduction in Low-Heat-Rejection Engine Combustion Chambers

1987-02-01
870156
Predicting the effects of transient heat conduction in low-heat-rejection engine components have been analyzed by applying instantaneous boundary conditions throughout a diesel engine thermodynamic cycle. This paper describes the advantages and disadvantages of one-dimensional finite difference and two-dimensional finite element methods by analyzing simple and complicated geometries like diesel bowl-in pistons. Also the performance characteristics of plasma sprayed zirconia, partially stabilized zirconia, and a monolithic reaction bonded silicon nitride ceramic materials are discussed and compared. Finite element studies have indicated that the steep temperature gradients associated with cyclic temperature swings in excess of 400 K may contribute to the failure of ceramic coatings near the corner joining the surface of the piston and the surface of the bowl for bowl-in pistons.
Technical Paper

In-Cylinder Components for High Temperature Diesel

1987-02-01
870159
The development of a practical, reliable, and durable adiabatic engine which will meet all advanced military requirements is still hindered because of available insulating materials and design limitations. The high temperatures and thermal gradients which are associated with a highly insulated low heat rejection engine create monumental challenges to engine designers. Over the past 12 years a wealth of information and experience has been generated. Numerous approaches to insulate the combustion chamber have been explored but none are known to simultaneously meet heat rejection, durability, and performance requirements. This paper will present the first year's results and the future plans of an adiabatic engine component technology development program for high output military engines, sponsored by the U.S. Army Tank-Automotive Command Center.
X