Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Test Loops for Two-Phase Thermal Management System Components

1990-07-01
901272
Two mechanically pumped two-phase test rigs were built at NLR in order to experimentally study critical issues of spacecraft two-phase thermal management systems: a 5 kW, 31 mm ID, freon loop, focusing on the critical components of the ESA Two-Phase Heat Transport System. a 300 W, 4.93 mm ID, ammonia loop, to support the development of the ESA Capillary Pumped Loop Experiment (for the in-orbit demonstration of two-phase heat transport system technology) and to experimentally support two-phase thermal modelling and scaling activities. The rigs are described in detail. Typical test results are presented.
Technical Paper

On Thermal-Gravitational Modelling, Scaling and Flow Pattern Mapping Issues of Two-Phase Heat Transport Systems

1998-07-13
981692
The paper deals with heat and mass transfer research issues related to the development of spacecraft active thermal control systems, more specifically development of two-phase heat transport system technology. It focuses on design and development supporting theoretical work: the thermal/gravitational scaling of two-phase heat transport systems, including the aspects of gravity level dependent two-phase flow pattern mapping and condensation.
Technical Paper

Two-Phase Thermal Control for Planetary Base and Surface Systems Applications: A Critical Review of Some Research Issues to be Investigated

2008-06-29
2008-01-2006
Discussed are some critical theoretical and experimental research issues to be investigated for candidate two-phase thermal control systems (and their components), to define what is to be done to develop reliable systems, for near and far future planetary applications envisaged. An earlier publication SAE-2007-01-3242 (“Design of planetary two-phase thermal control systems, using experimental data of terrestrial model systems, built according to thermal-gravitational modelling and scaling laws”), discussed that such advanced thermal control systems are one of the key technologies needed for future applications within the framework of the NASA Authorization Act 2005. This act specifies a programme to be established to develop sustained human presence on the Moon, including a robust pre-curser programme to promote exploration, science, commerce and US preeminence in space, also as a stepping stone to future exploration of Mars and other planetary destinations.
Technical Paper

Development of a Mechanically Pumped Two-Phase CO2 Cooling Loop for the AMS-2 Tracker Experiment

2002-07-15
2002-01-2465
The Alpha Magnetic Spectrometer AMS-2 is planned for a five years mission as attached payload on ISS, the International Space Station. It is an international experiment searching for anti-matter, dark matter, and missing matter. AMS-2, an improved version of AMS-1 flown on STS 91, consists of various particle detector systems, one of these being the (Silicon) Tracker. The trade-off based choice and the experimental feasibility demonstration of a mechanically pumped two-phase CO2 cooling loop for the Tracker is discussed in detail. The current status and ongoing and planned development activities are discussed.
Technical Paper

Sensors and Components for Aerospace Thermal Control and Propellant Systems

1997-07-01
972478
Various aspects of different sensors and components, (being) developed or fine-tuned for aerospace thermal control and propellant systems, are discussed, i.e.: rotatable radial heat pipe joints, vapour quality sensors, controllable valves, condensers, flow metering assemblies and propellant gauges.
Technical Paper

Quality Monitoring in Two-Phase Heat Transport Systems for Large Spacecraft

1986-07-14
860959
Two-phase heat transport systems are currently considered for the thermal management of future large power spacecraft. The monitoring of the quality, being the relative vapour mass content, of the two-phase mixture at various locations in the system, is valuable - possibly indispensable - for the proper operation of such a system. This paper reviews concepts for quality monitoring. Only a few concepts turn out to be suitable for spacecraft applications. Promising concepts are based on the capacitance, sonic velocity and index of refraction. These concepts are described and quantitatively analyzed. Applicability, advantages, restrictions and some hardware aspects are discussed.
X