Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Journal Article

Design and Operation of a Brake and Throttle Robot

2009-04-20
2009-01-0429
This paper describes the design and implementation of the SEA, Ltd. Brake and Throttle Robot (BTR). Presented are the criteria used in the initial design and the development and testing of the BTR, as well as some test results achieved with the device. The BTR is designed for use in automobiles and light trucks. It is based on a servomotor driven ballscrew, which in turn operates either the brake or accelerator. It is easily portable from one vehicle to another and compact enough to fit even smaller vehicles. The BTR is light enough so as to have minimal effect on the measurement of vehicle parameters. The BTR is designed for use as a stand-alone unit or as part of a larger control system such as the Automated Test Driver (ATD) yet allows for the use of a test driver for safety, as well as test selection, initiation, and monitoring. Installation in a vehicle will be described, as well as electronic components that support the BTR.
Journal Article

Application of Air Brake Performance Relationships in Accident Reconstruction and Their Correlation to Real Vehicle Performance

2012-04-16
2012-01-0609
This research paper builds onto the wealth of technical information that has been published in the past by engineers such as Flick, Radlinski, and Heusser. For this paper, the pushrod force versus chamber pressure data published by Heusser are supplemented with data taken from brake chamber types not reported on by Heusser in 1991. The utility of Heusser's braking force relationships is explored and discussed. Finally, a straightforward and robust method for calculating truck braking performance, based on the brake stroke measurements and published heavy truck braking test results, is introduced and compared to full-scale vehicle test data.
Journal Article

The Influence of Disablement of Various Brakes on the Dry Stopping Performance and Stability of a Tractor-Semitrailer

2009-04-20
2009-01-0099
This research was performed using a designed experiment to evaluate the loss of dry surface braking performance and stability that could be associated with the disablement of specific brake positions on a tractor-semitrailer. The experiment was intended to supplement and update previous research by Heusser, Radlinski, Flick, and others. It also sought to establish reasonable limits for engineering estimates on stopping performance degradation attributable to partial or complete brake failure of individual S-cam air brakes on a class 8 truck. Stopping tests were conducted from 30 mph and 60 mph, with the combination loaded to GCW (80,000 lb.), half-payload, and with the flatbed semitrailer unladen. Both tractor and semitrailer were equipped with antilock brakes. Along with stopping distance, brake pressures, longitudinal acceleration, road wheel speed, and steering wheel position and effort were also recorded.
Technical Paper

Automated Steering Controller for Vehicle Testing

2007-08-05
2007-01-3647
Automating road vehicle control can increase the range and reliability of dynamic testing. Some tests, for instance, specify precise steering inputs which human test drivers are only able to approximate, adding uncertainty to the test results. An automated steering system has been developed which is capable of removing these limitations. This system enables any production car or light truck to follow a user-defined path, using global position feedback, or to perform specific steering sequences with excellent repeatability. The system adapts itself to a given vehicle s handling characteristics, and it can be installed and uninstalled quickly without damage or permanent modification to the vehicle.
Technical Paper

Lateral Stiffness, Cornering Stiffness and Relaxation Length of the Pneumatic Tire

1990-02-01
900129
This paper describes an experimental program of tire research used to quantify the concept of the “relaxation length” of the fully rolling, steered tire. Two methods of developing lateral force are compared for the general car with the result that a first-order differential equation is obtained from which the change is lateral force with time, or distance, as the steer angle variation is computed.
Technical Paper

Development and Verification of Suspension Parameters for The Ohio State Buckeye Bullet 2 Land Speed Vehicle

2007-04-16
2007-01-0814
The Buckeye Bullet set domestic as well as international speed records for electric vehicles in 2004. The next generation of land speed vehicle from Ohio State called the Buckeye Bullet 2 (henceforth the BB2) will again challenge and hopefully achieve several new speed records. The Buckeye Bullet suspension worked relatively well but was found to not be quite optimal for the vehicle. The purpose of the work outlined here was to develop a new front and rear suspension for the BB2 that would be an improvement over the suspension of the original Bullet. Previous to the start of this work part of the suspension had already been designed in the form of an upright/control arm setup. This paper works on taking the suspension to completion from this point of design. Work done includes developing the final design, determining suspension parameters, building an ADAMS model, and testing the ADAMS model.
Technical Paper

Adaptation of TruckSim Models to Simulate Experimental Heavy Truck Hard Braking Test Data Under Various Levels of Brake Disablement

2010-10-05
2010-01-1920
This research focuses on the development and performance of analytical models to simulate a tractor-semitrailer in straight-ahead braking. The simulations were modified and tuned to simulate full-treadle braking with all brakes functioning correctly, as well as the behavior of the tractor-semitrailer rig under full braking with selected brakes disabled. The models were constructed in TruckSim and based on a tractor-semitrailer used in dry braking performance testing. The full-scale vehicle braking research was designed to define limits for engineering estimates on stopping distance when Class 8 air-braked vehicles experience partial degradation of the foundation brake system. In the full scale testing, stops were conducted from 30 mph and 60 mph, with the combination loaded to 80,000 lbs (gross combined weight or GCW), half payload, and with the tractor-semitrailer unladen (lightly loaded vehicle weight, or LLVW).
Technical Paper

An Investigation of Thermal Effects on the Hybrid III Thorax Utilizing Finite Element Method

2001-03-05
2001-01-0767
The advent of the Hybrid III crash test dummy marked the beginning of biofidelic anthropomorphic test devices. During the development of its critical components, notably the head, neck, knee, and thorax, biomechanical cadaver test results were incorporated into the design. The result was a dummy that represented the 50th percentile male during idealized impacts. In order to achieve a more biofidelic response from the components, many exotic materials and unique designs were utilized. The thorax, for instance, incorporates a spring steel rib design laminated with a viscoelastic polymeric composite material to damp the response. This combination results in the proper hysteretic losses necessary to model the human thorax under impact loading conditions. The disadvantage of this design is that the damping material properties are highly sensitive to temperature. A variation of more than 5 degrees Fahrenheit dramatically affects the response of the thorax.
Technical Paper

A Validation Study of Vehicle Dynamics Simulations for Heavy Truck Handling Maneuvers

2001-03-05
2001-01-0139
This paper deals with the ongoing efforts at The Vehicle Research and Test Center (VRTC) in East Liberty, Ohio in promoting the safe operation of heavy trucks. The associated research evaluated two vehicle dynamics simulations for their accuracy in predicting tractor-trailer handling metrics. The goals of the research were threefold: 1. Establish a generic “benchmark” parametric data set for the three-axle truck/two-axle trailer vehicle 2. Demonstrate the accuracy of experimental data that was collected for the tractor-trailer vehicle of this study 3. Demonstrate the accuracy of two vehicle simulations by comparing their predicted responses to experimentally observed vehicle responses and metrics.
Technical Paper

A Study of Vehicle Response Asymmetries During Severe Driving Maneuvers

2004-03-08
2004-01-1788
During Phase VI of the National Highway Traffic Safety Administration's (NHTSA) Light Vehicle Rollover Research Program, three of the twenty-six light vehicles tested exhibited significant response asymmetries with respect to left versus right steer maneuvers. This paper investigates possible vehicle asymmetric characteristics and unintended inputs that may cause vehicle asymmetric response. An analysis of the field test data, results from suspension and steering parameter measurements, and a summary of a computer simulation study are also given.
Technical Paper

A Demographic Analysis and Reconstruction of Selected Cases from the Pedestrian Crash Data Study

2002-03-04
2002-01-0560
This study involves two areas of research. The first is the finalization of the Pedestrian Crash Data Study (PCDS) in order to provide detailed information regarding the vehicle/pedestrian accident environment and how it has changed from the interim PCDS information. The pedestrian kinematics, injury contact sources, and injuries were analyzed relative to vehicle geometry. The second area presented is full-scale attempts at reconstruction of two selected PCDS cases using the Polar II pedestrian dummy to determine if the pre-crash motion of the pedestrian and vehicle could somehow be linked to the injuries and vehicle damage documented in the case.
Technical Paper

Spot Weld Failure Analysis for Accident Reconstruction

1994-03-01
940570
Adequacy of resistance spot welds in low carbon steels in relation to structural integrity can become an issue in the reconstruction of automotive accidents. Because formation of a plug (or button or slug) in a peel test is used as a quality control criterion for welds, it is sometimes assumed conversely that a weld which failed is defective if no plug is present. Spot welds do not necessarily form a plug when fractured. Fracture behavior of spot welds both by overload and fatigue is reviewed. Then techniques for examination of field failures are discussed. Finally two case histories are discussed.
Technical Paper

Improving Steering Feel for the National Advanced Driving Simulator

1997-02-24
970567
The National Highway Traffic Safety Administration's Vehicle Research and Test Center (VRTC) plans to evolve the state-of-the-art of steering system modeling for driving simulators with the ultimate goal being the development of a high fidelity steering feel model for the National Advanced Driving Simulator (NADS). The VRTC plans on developing reliable research tools that can be used to determine the necessary features for a steering model that will provide good objective and subjective steering feel. This paper reviews past and continuing work conducted at the VRTC and provides a plan for future work that will achieve this goal.
Technical Paper

Modeling, Simulation and Design Space Exploration of a MTV 5.0 Ton Cargo Truck in MSC-ADAMS

2005-04-11
2005-01-0938
This paper presents the results of a design space exploration based on the simulations of the MTV (Medium Tactical Vehicle) 5.0 Ton Cargo Truck using MSC-ADAMS (Automatic Dynamic Analysis of Mechanical System). Design space study is conducted using ADAMS/Car and ADAMS/Insight to consider parametric design changes in suspension and the tires of the cargo truck. The methodology uses an industry acknowledged multibody dynamics simulation software (ADAMS) for the modeling of the cargo truck and a flexible optimization architecture to explore the design space. This research is a part of the work done for the U.S. Army TACOM (Tank Automotive and Armaments Command) at the Center for Automotive Research, The Ohio State University.
Technical Paper

An Experimental Determination of the Strain History, Deflection Behavior, and Material Properties of a Composite material Rooftop for a Multipurpose Vehicle Part III

1989-02-01
890549
Composite material roof structures for multipurpose vehicles are comprised of a composite shell molded without metal frames as in most automobile rooftops. This paper experimentally analyzes the roof structure performance for a static uniformly distributed load over the roof surface and examines the tensile properties, effects of high temperatures and sound absorption characteristics of the random, chopped glass fiber reinforced epoxy resin material. The roof performance includes the load-strain history and the load-deflection behavior of the structure.
Technical Paper

Self-Tuning Optimal Control of an Active Suspension

1989-11-01
892485
The objective of this paper is to develop a self-tuning optimal control of an active suspension. An active suspension composed of an identifier and a controller is proposed in this paper. Although control strategies on active (or semi-active) suspensions have been investigated during the past few decades, some problems are not well understood yet. One of them arising from the ride control of an active suspension is that when the weight and the moments of inertia of the sprung mass are varied, the feedback gains of the controller should vary with the variation of parameters accordingly. Therefore, the identifier is proposed before the controller is designed. In the real situations, the parameter variation may occur when loadings on vehicles vary - either from passengers or payloads, especially, in the case of loading on a truck. An identification structure using parallel model reference adaptive system (MRAS) is proposed to identify the true parameters.
Technical Paper

Review of Pedestrian Safety Research in the United States

1989-02-01
890757
Pedestrian vehicle accidents account for a considerable proportion of all automobile related injuries and deaths each year. Due to the large difference in mass between the pedestrian and the vehicle, pedestrian injury reduction is a formidable task. In spite of these difficulties, world attention is beginning to focus on pedestrian injuries and methods to quantitatively evaluate a vehicle for its pedestrian injury potential. This paper reviews the status of work in the United States on devices and methods for measuring pedestrian impact response. Where data is available test device response is summarized. The state of pedestrian accident research is also reviewed in the light of national and International interest in reducing pedestrian injuries.
Technical Paper

An Overview of the Evolution of Computer Assisted Motor Vehicle Accident Reconstruction

1987-10-01
871991
This paper presents an overview of the evolution of computer simulations in vehicle collision and occupant kinematic reconstructions. The basic principles behind these simulations, the origin of these programs and the evolution of these programs from a basic analytical mathematical model to a sophisticated computer program are discussed. In addition, a brief computer development history is discussed to demonstrate how the evolution of computer assisted vehicle accident reconstruction becomes feasible for a reconstructionist. Possible future research in computer reconstruction is also discussed.
X