Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Measures to Prevent Unauthorized Access to the In-Vehicle E/E System, Due to the Security Vulnerability of a Remote Diagnostic Tester

2017-03-28
2016-32-0018
Remote diagnostic systems support diagnostic communication by having the capability of sending diagnostic request services to a vehicle and receiving diagnostic response services from a vehicle. These diagnostic services are specified in diagnostic protocols, such as SAE J1979, SAE J1939 or ISO 14229 (UDS). For the purpose of diagnostic communication, the tester needs access to the electronic control units as communication partners. Physically, the diagnostic tester gets access to the entire vehicle´s E/E system, which consists of connectors, wiring, the in-vehicle network (e.g. CAN), the electronic control units, sensors, and actuators. Any connection of external test equipment and the E/E system of a vehicle poses a security vulnerability. The combination can be used for malicious intrusion and manipulation.
Journal Article

Postural Comfort Inside a Car: Development of an Innovative Model to Evaluate the Discomfort Level

2009-04-20
2009-01-1163
How can car designers evaluate device’s position inside a car today? Today only subjective tests or “reachability” tests are made to assess if a generic user is able to reach devices, but it’s no longer enough. The aim of this study is to identify an instrument (index) that is able to provide a numerical information about the discomfort level connected with a posture that is kept inside a car to reach a device, by this instrument it should be possible not only judge a posture, but also compare different solutions and get rapid and accurate evaluations. In the state of the art there are many indexes developed to evaluate postural comfort (like RULA, REBA and LUBA [3, 4, 5]) but none of them has been realized to evaluate postures’ conditions that can be detected inside a car, so their evaluations cannot be acceptable.
Journal Article

Size and Weight Reduction Technology for a Hybrid System

2009-04-20
2009-01-1339
A small hybrid system was developed for the 2009 model hybrid vehicle. The Intelligent Power Unit (IPU), which consists of a high-voltage battery and a Power Control Unit (PCU), occupies 19% less volume and is 28% lighter than the previous model(1). In order to reduce the size and weight of the IPU, the number of nickel-metal hydride battery modules was reduced, enabling the battery box to be made smaller and lighter. In order to provide the necessary output with fewer battery modules, the length of the battery electrodes was increased, thus raising the output from each battery module. The volume and weight of the PCU were reduced by integrating the inverter, DC-DC converter, and ECU into a single package. The size reduction of the IPU enabled the IPU to be installed at the bottom of the luggage compartment. As a result, the available space in the luggage compartment is the same as that of a conventional vehicle.
Journal Article

SCR Catalyst Systems Optimized for Lightoff and Steady-State Performance

2009-04-20
2009-01-0901
A laboratory study was performed to optimize a zoned configuration of an iron (Fe) SCR catalyst and a copper (Cu) SCR catalyst in order to provide high NOx conversion at lean A/F ratios over a broad range of temperature for diesel and lean-burn gasoline applications. With an optimized space velocity of 8,300 hr-1, a 67% (by volume) Fe section followed by a 33% Cu section provided at least 80% NOx conversion from approximately 230°C to 640°C when evaluated with 500 ppm NO and NH3. To improve the lean lightoff performance of the SCR catalyst system during a cold start, a Cu SCR catalyst that was 1/4 as long as the rear Cu SCR catalyst was placed in front of the Fe SCR catalyst. When evaluated with an excess of NH3 (NH3/NO ratio of 2.2), the Cu+Fe+Cu SCR system had significantly improved lightoff performance relative to the Fe+Cu SCR system, although the front Cu SCR catalyst did decrease the NOx conversion at temperatures above 475°C by oxidizing some of the NH3 to N2 or NO.
Journal Article

Development of New TOYOTA FCHV-adv Fuel Cell System

2009-04-20
2009-01-1003
Since 1992, Toyota Motor Corporation (TMC) has been working on the development of fuel cell system technology. TMC is designing principal components in-house, including fuel cell stacks, high-pressure hydrogen storage tank systems, and hybrid systems. TMC developed the ‘02 model TOYOTA FCHV, the world-first market-ready fuel cell vehicle, and started limited lease of the vehicles in December 2002. In June 2008, TMC developed a new TOYOTA FCHV-adv which obtained vehicle type certification in Japan, and is currently available for leasing in Japan and the United States. In the development of the TOYOTA FCHV-adv, TMC has improved the cruising range and cold start/drive capability from the previous TOYOTA FCHV. The TOYOTA FCHV-adv has achieved an actual cruising range of over 500 km, which is equivalent to that of current gasoline vehicles. In addition, the TOYOTA FCHV-adv has proven starting/driving capability at -30°C temperature.
Journal Article

Advanced Control System of Variable Compression Ratio (VCR) Engine with Dual Piston Mechanism

2009-04-20
2009-01-1063
A dual piston Variable Compression Ratio (VCR) engine has been newly developed. This compact VCR system uses the inertia force and hydraulic pressure accompanying the reciprocating motion of the piston to raise and lower the outer piston and switches the compression ratio in two stages. For the torque characteristic enhancement and the knocking prevention when the compression ratio is being switched, it is necessary to carry out engine controls based on accurate compression ratio judgment. In order to accurately judge compression ratio switching timing, a control system employing the Hidden Markov Model (HMM) was used to analyze vibration generated during the compression ratio switching. Also, in order to realize smooth torque characteristics, an ignition timing control system that separately controls each cylinder and simultaneously performs knocking control was constructed.
Journal Article

Disturbance of Electronics in Low-Earth Orbits by High Energy Electron Plasmas

2009-07-12
2009-01-2339
Electrical disturbances caused by charging of cables in spacecraft can impair electrical systems for long periods of time. The charging originates primarily from electrons trapped in the radiation belts of the earth. The model Space Electrons Electromagnetic Effects (SEEE) is applied in computing the transient charge and electric fields in cables on spacecraft at low to middle earth altitudes. The analysis indicated that fields exceeding dielectric breakdown strengths of common dielectric materials are possible in intense magnetic storms for systems with inadequate shielding. SEEE also computes the minimal shielding needed to keep the electric fields below that for dielectric breakdown.
Journal Article

Dynamic Analysis of Car Ingress/Egress Movement: an Experimental Protocol and Preliminary Results

2009-06-09
2009-01-2309
This paper focuses on full body dynamical analysis of car ingress/egress motion. It aims at proposing an experimental protocol adapted for analysing joint loads using inverse dynamics. Two preliminary studies were first performed in order to 1/ define the main driver/car interactions so as to allow measuring the contact forces at all possible contact zones and 2/ identify the design parameters that mainly influence the discomfort. In order to verify the feasibility of the protocol, a laboratory study was carried out, during which two subjects tested two car configurations. The experimental equipment was composed of a variable car mock-up, an optoelectronic motion tracking system, two 6D-force plates installed on the ground next to the doorframe and on the car floor, a 6D-Force sensor between the steering wheel and the steering column, and two pressure maps on the seat. Motions were reconstructed from measured surface markers trajectories using inverse kinematics.
Journal Article

International Space Station United States Operational Segment Crew Quarters On-orbit vs. Design Performance Comparison

2009-07-12
2009-01-2367
The International Space Station (ISS) United States Operational Segment (USOS) received the first two permanent ISS Crew Quarters (CQ) on Utility Logistics Flight Two (ULF2) in November 2008. As many as four CQs can be installed in the Node 2 element to increase the ISS crew member size to six. The CQs provide crew members with private space that has enhanced acoustic noise mitigation, integrated radiation-reduction material, communication equipment, redundant electrical systems, and redundant caution and warning systems. The rack-sized CQ system has multiple crew member restraints, adjustable lighting, controllable ventilation, and interfaces that allow each crew member to personalize his or her CQ workspace. The deployment and initial operational checkout during integration of the ISS CQ to Node 2 is described in this paper.
Journal Article

Sphere-To-Cone Mating – New Solution to Improve Brake Tube Connector Sealing Robustness

2009-10-11
2009-01-3024
Recently invented solutions (Canadian Patent 2593305 and United States Patent Applications 20090015008 and 20070194567) incorporate sphere-to-cone type of the interaction between sealing surfaces in a brake tube connector. An interaction of sphere-to-cone type has numerous advantages over one with a cone-to-cone type which is currently utilized in conventional automotive brake tube connectors. Incorporation of a sphere-to-cone interaction between the sealing surfaces dramatically improves connector's sealing robustness. Sphere-to-cone based connectors are resilient to the tube and seat axes misalignment. Correspondingly, sphere-to-cone based connectors have less variation of the securing torque and virtually no propensity to locked misalignment occurrence. The article analyzes another fundamental advantage of a sphere-to-cone mating over the conventional cone-to-cone one.
Journal Article

Stator Side Voltage Regulation of Permanent Magnet Generators

2009-11-10
2009-01-3095
Permanent magnet AC generators are robust, inexpensive, and efficient compared to wound-field synchronous generators with brushless exciters. Their application in variable-speed applications is made difficult by the variation of the stator voltage with shaft speed. This paper presents the use of stator-side reactive power injection as a means of regulating the stator voltage. Design-oriented analysis of machine performance for this mode of operation identifies an appropriate level of machine saliency that enables excellent terminal voltage regulation over a specified speed and load range, while minimizing stator current requirements. This paper demonstrates that the incorporation of saliency into the permanent magnet generator can significantly reduce the size of the reactive current source that is required to regulate the stator voltage during operation over a wide range of speeds and loads.
Journal Article

Effect of Injection Strategy on Cold Start Performance in an Optical Light-Duty DI Diesel Engine

2009-09-13
2009-24-0045
The present study investigates cold start at very low temperatures, down to −29 deg C. The experiments were conducted in an optical light duty diesel engine using a Swedish class 1 environmental diesel fuel. In-cylinder imaging of the natural luminescence using a high speed video camera was performed to get a better understanding of the combustion at very low temperature conditions. Combustion in cold starting conditions was found to be asymmetrically distributed in the combustion chamber. Combustion was initiated close to the glow plug first and then transported in the swirl direction to the adjacent jets. A full factorial study was performed on low temperature sensitivity for cold start. The effects of cooling down the engine by parts on stability and noise were studied. Furthermore, different injection strategies were investigated in order to overcome the limited fuel evaporation process at very low temperatures.
Journal Article

Improving Cabin Thermal Comfort by Controlling Equivalent Temperature

2009-11-10
2009-01-3265
An aircraft environmental control system (ECS) is commonly designed for a cabin that has been divided into several thermal control zones; each zone has an air flow network that pulls cabin air over an isolated thermocouple. This single point measurement is used by the ECS to control the air temperature and hence the thermal environment for each zone. The thermal environment of a confined space subjected to asymmetric thermal loads can be more fully characterized, and subsequently better controlled, by determining its “equivalent temperature.” This paper describes methodology for measuring and controlling cabin equivalent temperature. The merits of controlling a cabin thermal zone based on its equivalent temperature are demonstrated by comparing thermal comfort, as predicted by a “virtual thermal manikin,” for both air-temperature and equivalent-temperature control strategies.
Journal Article

Columbus Thermal Hydraulic Operations with US Payloads

2009-07-12
2009-01-2555
After launch and activation activities, the Columbus module started its operational life on February 2008 providing resources to the internal and external experiments. In March 2008 two US Payloads were successfully installed into Columbus Module: Microgravity Sciences Glovebox (MSG) and a US payload of the Express rack family, Express Rack 3, carrying the European Modular Cultivation System (EMCS) experiment. They were delivered to the European laboratory from the US laboratory and followed few months later by similar racks; Human Research Facility 1 (HRF1) and HRF2. The following paper provides an overview of US Payloads, giving their main features and experiments run inside Columbus on year 2008. Flight issues, mainly on the hydraulic side are also discussed. Engineering evaluations released to the flight control team, telemetry data, and relevant mathematical models predictions are described providing a background material for the adopted work-around solutions.
Journal Article

SoH Recognition of Aviation Batteries Via Passive Diagnostic Device

2010-11-02
2010-01-1762
Aviation battery maintenance is trending toward on-condition maintenance. Nickel-Cadmium (NiCd), Valve Regulated Lead-Acid (VRLA), or prospective Li-ion batteries are used to start engines, provide emergency back-up power, and assure ground power capability for maintenance and pre-flight checkout. As these functions are mission essential, State of Health (SoH) recognition is critical. SoH includes information regarding battery energy, power and residual cycle life. This paper describes an SoH recognition technique for on-board aviation batteries and presents a passive diagnostic device (PDD). The PDD monitors on-board system battery current, voltage and ambient temperature and utilizes no active signals to the battery which can be restricted or even prohibited in order to avoid any interference with the vehicle electrical system.
Journal Article

System Integration of a Safe, High Power, Lithium Ion Main Battery into a Civil Aviation Aircraft

2010-11-02
2010-01-1770
The Cessna Citation CJ4, certified on March 12, 2010, is believed to be the first civil aircraft with a Lithium Ion main battery. The 26.4VDC, 44Ah Lithium Ion main battery weighs 54 lbs, a 35% weight saving over a Nickel-Cadmium battery. Using phosphate-based Lithium Ion cells, which have no positive feedback thermal runaway failure mode, system integration of the battery and aircraft architecture design is simpler. Electronics and software are needed to optimize life only, not to ensure safety. Emergency discharge with failed electronics is enabled with the selection of a less volatile chemistry, the use of an analog Module Management System for cell balancing and protection, and the use of a microcontroller-based digital Central Monitoring System that reports health. System safety failure hazard assessment is considered Major, and the battery software is certified to the requirements of RTCA DO-178B, Design Assurance Level C.
Journal Article

Mitigating Heavy Truck Rear-End Crashes with the use of Rear-Lighting Countermeasures

2010-10-05
2010-01-2023
In 2006, there were approximately 23,500 rear-end crashes involving heavy trucks (i.e., gross vehicle weight greater than 4,536 kg). The Enhanced Rear Signaling (ERS) for Heavy Trucks project was developed by the Federal Motor Carrier Safety Administration (FMCSA) to investigate methods to reduce or mitigate those crashes where a heavy truck has been struck from behind by another vehicle. Visual warnings have been shown to be effective, assuming the following driver is looking directly at the warning display or has his/her eyes drawn to it. A visual warning can be placed where it is needed and it can be designed so that its meaning is nearly unambiguous. FMCSA contracted with the Virginia Tech Transportation Institute (VTTI) to investigate potential benefit of additional rear warning-light configurations as rear-end crash countermeasures for heavy trucks.
Journal Article

Electro-Thermal Modeling of a Lithium-ion Battery System

2010-10-25
2010-01-2204
Lithium-ion (Li-ion) batteries are becoming widely used high-energy sources and a replacement of the Nickel Metal Hydride batteries in electric vehicles (EV), hybrid electric vehicles (HEV) and plug-in hybrid electric vehicles (PHEV). Because of their light weight and high energy density, Li-ion cells can significantly reduce the weight and volume of the battery packs for EVs, HEVs and PHEVs. Some materials in the Li-ion cells have low thermal stabilities and they may become thermally unstable when their working temperature becomes higher than the upper limit of allowed operating temperature range. Thus, the cell working temperature has a significant impact on the life of Li-ion batteries. A proper control of the cell working temperature is crucial to the safety of the battery system and improving the battery life. This paper outlines an approach for the thermal analysis of Li-ion battery cells and modules.
Journal Article

Deposit Control in Modern Diesel Fuel Injection Systems

2010-10-25
2010-01-2250
Modern diesel Fuel Injection Equipment (FIE) systems are susceptible to the formation of a variety of deposits. These can occur in different locations, e.g. in nozzle spray-holes and inside the injector body. The problems associated with deposits are increasing and are seen in both Passenger Car (PC) and Heavy Duty (HD) vehicles. Mechanisms responsible for the formation of these deposits are not limited to one particular type. This paper reviews FIE deposits developed in modern PC and HD engines using a variety of bench engine testing and field trials. Euro 4/ IV and Euro 5/V engines were selected for this programme. The fuels used ranged from fossil only to distillate fuels containing up to 10% Fatty Acid Methyl Ester (FAME) and then treated with additives to overcome the formation of FIE deposits.
Journal Article

The Technology and Economics of In-Wheel Motors

2010-10-19
2010-01-2307
Electric vehicle development is at a crossroads. Consumers want vehicles that offer the same size, performance, range, reliability and cost as their current vehicles. OEMs must make a profit, and the government requires compliance with emissions standards. The result - low volume, compromised vehicles that consumers don't want, with questionable longevity and minimal profitability. In-wheel motor technology offers a solution to these problems; providing power equivalent to ICE alternatives in a package that does not invade chassis, passenger and cargo space. At the same time in-wheel motors can reduce vehicle part count, complexity and cost, feature integrated power electronics, give complete design freedom and the potential for increased regenerative braking (reducing battery size and cost, or increasing range).
X