Refine Your Search

Topic

Search Results

Viewing 1 to 20 of 20
Technical Paper

Simultaneous Negative PLIF and OH* Chemiluminescence Imaging of the Gas Exchange and Flame Jet from a Narrow Throat Pre-Chamber

2020-09-15
2020-01-2080
Pre-chamber combustion (PCC) is a promising engine combustion concept capable of extending the lean limit at part load. The engine experiments in the literature showed that the PCC could achieve higher engine thermal efficiency and much lower NOx emission than the spark-ignition engine. Improved understanding of the detailed flow and combustion physics of PCC is important for optimizing the PCC combustion. In this study, we investigated the gas exchange and flame jet from a narrow throat pre-chamber (PC) by only fueling the PC with methane in an optical engine. Simultaneous negative acetone planar laser-induced fluorescence (PLIF) imaging and OH* chemiluminescence imaging were applied to visualize the PC jet and flame jet from the PC, respectively. Results indicate a delay of the PC gas exchange relative to the built-up of the pressure difference (△ P) between PC and the main chamber (MC). This should be due to the gas inertia inside the PC and the resistance of the PC nozzle.
Technical Paper

Validation of Computational Models for Isobaric Combustion Engines

2020-04-14
2020-01-0806
The focus of this study is to aid the development of the isobaric combustion engine by investigating multiple injection strategies at moderately high pressures. A three-dimensional (3D) commercial computational fluid dynamics (CFD) code, CONVERGE, was used to conduct simulations. The validation of the isobaric combustion case was carried out through the use of a single injector with multiple injections. The computational simulations were matched to the experimental data using methods outlined in this paper for different multiple injection cases. A sensitivity analysis to understand the effects of different modeling components on the quantitative prediction was carried out. First, the effects of the kinetic mechanisms were assessed by employing different chemical mechanisms, and the results showed no significant difference in the conditions under consideration.
Technical Paper

Quantitative Analysis of the Relation between Flame Structure and Turbulence in HCCI Combustion by Two-Dimensional Temperature Measurement

2008-04-14
2008-01-0061
The structure of HCCI (homogeneous charge compression ignition) combustion flames was quantitatively analyzed by measuring the two-dimensional gas temperature distribution using phosphor thermometry. It was found from the relation between a turbulent Reynolds number and Karlovitz number that, when compared with the flame propagation in an S.I. engine, HCCI combustion has a wider flame structure with respect to the turbulence scale. As a result of our experimentation for the influence of low temperature reaction (LTR) using two types of fuel, it was also confirmed that different types of fuel produce different histories of flame kernel structure.
Technical Paper

Demonstrating the Performance and Emission Characteristics of a Variable Compression Ratio, Alvar- Cycle Engine

1998-10-19
982682
This paper is a direct continuation of a previous study that addressed the performance and design of a variable compression engine, the Alvar-Cycle Engine [1]. The earlier study was presented at the SAE International Conference and Exposition in Detroit during February 23-26, 1998 as SAE paper 981027. In the present paper test results from a single cylinder prototype are reviewed and compared with a similar conventional engine. Efficiency and emissions are shown as function of speed, load, and compression ratio. The influence of residual gas on knock characteristics is shown. The potential for high power density through heavy supercharging is analyzed.
Technical Paper

A Novel Model for Computing the Trapping Efficiency and Residual Gas Fraction Validated with an Innovative Technique for Measuring the Trapping Efficiency

2008-09-09
2008-32-0003
The paper describes a novel method for calculating the residual gas fraction and the trapping efficiency in a 2 stroke engine. Assuming one dimensional compressible flow through the inlet and exhaust ports, the method estimates the instantaneous mass flowing in and out from the combustion chamber; later the residual gas fraction and trapping efficiency are estimated combining together the perfect displacement and perfect mixing scavenging models. It is assumed that when the intake port opens, the fresh mixture is pushing out the burned charge without any mixing and after a multiple of the time needed for the largest eddy to perform one rotation, the two gasses are instantly mixed up together and expelled. The result is a very simple algorithm that does not require much computational time and is able to estimate with high level of precision the trapping efficiency and the residual gas fraction in 2 stroke engines.
Technical Paper

Two-Dimensional Temperature Measurements in Diesel Piston Bowl Using Phosphor Thermometry

2009-09-13
2009-24-0033
Phosphor thermometry was used during fuel injection in an optical engine with the glass piston of reentrant type. SiO2 coated phosphor particle was used for the gas-phase temperature measurements, which gave much less background signal. The measurements were performed in motored mode, in combustion mode with injection of n-heptane and in non-combustion mode with injection of iso-octane. In the beginning of injection period, the mean temperature of each injection cases was lower than that of the motored case, and temperature of iso-octane injection cases was even lower than that of n-heptane injection cases. This indicates, even if vaporization effect seemed to be the same at both injection cases, the effect of temperature decrease changed due to the chemical reaction effect for the n-heptane cases. Chemical reaction seems to be initiated outside of the fuel liquid spray and the position was moving towards the fuel rich area as the time proceeds.
Technical Paper

Flow and Temperature Distribution in an Experimental Engine: LES Studies and Thermographic Imaging

2010-10-25
2010-01-2237
Temperature stratification plays an important role in HCCI combustion. The onsets of auto-ignition and combustion duration are sensitive to the temperature field in the engine cylinder. Numerical simulations of HCCI engine combustion are affected by the use of wall boundary conditions, especially the temperature condition at the cylinder and piston walls. This paper reports on numerical studies and experiments of the temperature field in an optical experimental engine in motored run conditions aiming at improved understanding of the evolution of temperature stratification in the cylinder. The simulations were based on Large-Eddy-Simulation approach which resolves the unsteady energetic large eddy and large scale swirl and tumble structures. Two dimensional temperature experiments were carried out using laser induced phosphorescence with thermographic phosphors seeded to the gas in the cylinder.
Technical Paper

The HCCI Combustion Process in a Single Cycle - Speed Fuel Tracer LIF and Chemiluminescence Imaging

2002-03-04
2002-01-0424
The Homogeneous Charge Compression Ignition (HCCI) combustion progress has been characterized by means of high-speed fuel tracer Planar Laser Induced Fluorescence (PLIF) combined with simultaneous chemiluminescence imaging. Imaging has been conducted using a high-speed laser and detector system. The system can acquire a sequence of eight images within less than one crank angle. The engine was run at 1200 rpm on iso-octane or ethanol and a slight amount of acetone was added as a fuel tracer, providing a marker for the unburned areas. The PLIF sequences showed that, during the first stage of combustion, a well distributed decay of fuel concentration occurs. During the later parts of the combustion process the fuel concentration images present much more structure, with distinct edges between islands of unburned fuel and products.
Technical Paper

The Effect of In-Cylinder Gas Flow on the Interpretation of the Ionization Sensor Signal

2003-03-03
2003-01-1120
The location of the peak pressure can serve as a control parameter to adjust ignition timing and optimize engine performance. The ionization sensor, an electrical probe for combustion diagnostics, can provide information about the peak pressure location. However, the reliability of such information is rather poor. In-cylinder gas flow at the electrodes may be one reason for this. We present results from an investigation of the relationship between ionization sensor current and pressure under various gas flow conditions. The gas flow velocity in the vicinity of the electrode gap was measured by LDA. From the results one may infer how the in-cylinder gas flow affects the reliability of the prediction of pressure peak location from the ionization sensor signal. One finding is that high bulk gas flow impairs the precision of the prediction in certain configurations.
Technical Paper

Automated IC Engine Model Development with Uncertainty Propagation

2011-04-12
2011-01-0237
This paper describes the development of a novel data model for storing and sharing data obtained from engine experiments, it then outlines a methodology for automatic model development and applies it to a state-of-the-art engine combustion model (including chemical kinetics) to reduce corresponding model parameter uncertainties with respect engine experiments. These challenges are met by adopting the latest developments in the semantic web to create a shared data model resource for the IC engine development community. The relevant data can be extracted and then used to set-up simulations for parameter estimation by passing it to the relevant application models. A methodology for incorporating experimental and model uncertainties into the model optimization procedure is presented.
Technical Paper

An Experimental Investigation of a Multi-Cylinder Engine with Gasoline-Like Fuel towards a High Engine Efficiency

2016-04-05
2016-01-0763
Partially Premixed Combustion (PPC) is a promising combustion concept with high thermodynamic efficiency and low emission level, and also with minimal modification of standard engine hardware. To use PPC in a production oriented engine, the optimal intake charge conditions for PPC should be included in the analysis. The experiments in this paper investigated and confirmed that the optimal intake conditions of net indicated efficiency for PPC are EGR between 50% and 55% as possible and the lambda close to 1.4. Heat-transfer energy and exhaust gas waste-energy contribute to the majority of the energy loss in the engine. The low EGR region has high heat-transfer and low exhaust gas enthalpy-waste, while the high EGR region has low heat-transfer and high exhaust gas waste-enthalpy. The optimal EGR condition is around 50% where the smallest energy loss is found as a trade-off between heat transfer and exhaust-gas enthalpy-waste.
Technical Paper

Investigation and Comparison of Residual Gas Enhanced HCCI using Trapping (NVO HCCI) or Rebreathing of Residual Gases

2011-08-30
2011-01-1772
A comparison between throttled and unthrottled spark ignition combustion with residual enhanced HCCI combustion is made. Early intake valve closing and late intake valve closing valve strategies for unthrottled spark ignition combustion are evaluated and compared. Approximately 3-6 percent relative improvement in net indicated efficiency is seen when comparing unthrottled spark ignition combustion with throttled spark ignition combustion depending on valve strategy and engine speed. The relative improvement in efficiency from spark ignition combustion to HCCI combustion is approximately 20 percent for the conditions presented in this study. The rebreathing strategies have the highest efficiency of the cases in this study.
Technical Paper

Auto-Ignition of Iso-Stoichiometric Blends of Gasoline-Ethanol-Methanol (GEM) in SI, HCCI and CI Combustion Modes

2017-03-28
2017-01-0726
Gasoline-ethanol-methanol (GEM) blends, with constant stoichiometric air-to-fuel ratio (iso-stoichiometric blending rule) and equivalent to binary gasoline-ethanol blends (E2, E5, E10 and E15 in % vol.), were defined to investigate the effect of methanol and combined mixtures of ethanol and methanol when blended with three FACE (Fuels for Advanced Combustion Engines) Gasolines, I, J and A corresponding to RON 70.2, 73.8 and 83.9, respectively, and their corresponding Primary Reference Fuels (PRFs). A Cooperative Fuel Research (CFR) engine was used under Spark Ignition and Homogeneous Charge Compression Ignited modes. An ignition quality tester was utilized in the Compression Ignition mode. One of the promising properties of GEM blends, which are derived using the iso-stoichiometric blending rule, is that they maintain a constant octane number, which has led to the introduction of methanol as a drop-in fuel to supplement bio-derived ethanol.
Technical Paper

Investigation of Premixed and Diffusion Flames in PPC and CI Combustion Modes

2018-04-03
2018-01-0899
The experimental in-cylinder combustion process was compared with the numerical simualtion for naphtha fuel under conventional compression ignition (CI) and partially premixed combustion (PPC) conditions. The start of injection timing (SOI) with the single injection strategy was changed from late of −10 CAD aTDC to early of −40 CAD aTDC. The three-dimensional full cycle engine combustion simulation was performed coupling with gas phase chemical kinetics by the CFD code CONVERGE™. The flame index was used for evaluating the combustion evolution of premixed flame and diffusion flame. The results show that the flame index could be used as an indicator for in-cylinder homogeneity evaluation. Hydroperoxyl shows a similar distribution with the premixed combustion. Formaldehyde could be used as an indicator for low temperature combustion.
Technical Paper

Effect of Jet-Jet Interactions on the Liquid Fuel Penetration in an Optical Heavy-Duty DI Diesel Engine

2013-04-08
2013-01-1615
The liquid phase penetration of diesel sprays under reacting conditions is measured in an optical heavy-duty Direct Injection (DI) diesel engine. Hot gas reservoirs along the diffusion flames have previously been shown to affect the liftoff length on multi hole nozzles. The aim of this study is to see if they also affect the liquid length. The inter-jet spacing is varied together with the Top Dead Center density and the inlet temperature. To avoid unwanted interferences from the natural flame luminosity the illumination wavelength is blue shifted from the black body radiation spectrum and set to 448 nm. Filtered Mie scattered light from the fuel droplets is recorded with a high speed camera. The liquid fuel penetration is evaluated from the start of injection to the quasi steady phase of the jets. Knowledge of jet-jet interaction effects is of interest for transferring fundamental understanding from combustion vessels to practical engine applications.
Technical Paper

Spray and Combustion Visualization of Gasoline and Diesel under Different Ambient Conditions in a Constant Volume Chamber

2013-10-14
2013-01-2547
Spray and combustion of gasoline and diesel were visualized under different ambient conditions in terms of pressure, temperature and density in a constant volume chamber. Three different ambient conditions were selected to simulate the three combustion regimes of homogeneous charge compression ignition, premixed charge compression ignition and conventional combustion. Ambient density was varied from 3.74 to 23.39 kg/m3. Ambient temperature at the spray injection were controlled to the range from 474 to 925 K. Intake oxygen concentration was also modulated from 15 % to 21 % in order to investigate the effects of intake oxygen concentrations on combustion characteristics. The injection pressure of gasoline and diesel were modulated from 50 to 150 MPa to analyze the effect of injection pressure on the spray development and combustion characteristics. Liquid penetration length and vapor penetration length were measured based on the methods of Mie-scattering and Schileren, respectively.
Technical Paper

Double Compression Expansion Engine: A Parametric Study on a High-Efficiency Engine Concept

2018-04-03
2018-01-0890
The Double compression expansion engine (DCEE) concept has exhibited a potential for achieving high brake thermal efficiencies (BTE). The effect of different engine components on system efficiency was evaluated in this work using GT Power simulations. A parametric study on piston insulation, convection heat transfer multiplier, expander head insulation, insulation of connecting pipes, ports and tanks, and the expander intake valve lift profiles was conducted to understand the critical parameters that affected engine efficiency. The simulations were constrained to a constant peak cylinder pressure of 300 bar, and a fixed combustion phasing. The results from this study would be useful in making technology choices that will help realise the potential of this engine concept.
Technical Paper

Cycle to Cycle Variations in S.I. Engines - The Effects of Fluid Flow and Gas Composition in the Vicinity of the Spark Plug on Early Combustion

1996-10-01
962084
Simultaneous measurements of early flame speed and local measurements of the major parameters controlling the process are presented. The early flame growth rate was captured with heat release analysis of the cylinder pressure. The local concentration of fuel or residual gas were measured with laser induced fluorescence (LIF) on isooctane/3-pentanone or water. Local velocity measurements were performed with laser doppler velocimetry (LDV). The results show a significant cycle to cycle correlation between early flame growth rate and several parameters. The experiments were arranged to suppress all but one important factor at a time. When the engine was run without fuel or residual gas fluctuations, the cycle to cycle variations of turbulence were able to explain 50 % of the flame growth rate fluctuations. With a significantly increased fluctuation of F/A, obtained with port fuelling, 65% of the growth rate fluctuation could be explained with local F/A measurements.
Technical Paper

Crank Angle Resolved HC-Detection Using LIF in the Exhausts of Small Two-Stroke Engines Running at High Engine Speed

1996-10-01
961927
In order to separate the HC-emissions from two-stroke engines into short-circuit losses and emissions due to incomplete combustion, Laser Induced Fluorescence (LIF) measurements were performed on the exhaust gases just outside the exhaust ports of two engines of different designs. The difference between the two engines was the design of the transfer channels. One engine had “finger” transfer channels and one had “cup handle” transfer channels. Apart from that they were similar. The engine with “finger” transfer channels was earlier known to give more short-circuiting losses than the other engine, and that behavior was confirmed by these measurements. Generally, the results show that the emission of hydrocarbons has two peaks, one just after exhaust port opening and one late in the scavenging phase. The spectral information shows differences between the two peaks and it can be concluded that the latter peak is due to short-circuiting and the earlier due to incomplete combustion.
Technical Paper

Compression Ignition of Low Octane Gasoline under Partially Premixed Combustion Mode

2018-09-10
2018-01-1797
Partially premixed combustion (PPC) is an operating mode that lies between the conventional compression ignition (CI) mode and homogeneous charge compression ignition (HCCI) mode. The combustion in this mixed mode is complex as it is neither diffusion-controlled (CI mode) nor governed solely by chemical kinetics (HCCI mode). In this study, CFD simulations were performed to evaluate flame index, which distinguishes between zones having a premixed flame and non-premixed flame. Experiments performed in the optical engine supplied data to validate the model. In order to realize PPC, the start of injection (SOI) was fixed at −40 CAD (aTDC) so that a required ignition delay is created to premix air/fuel mixture. The reference operating point was selected to be with 3 bar IMEP and 1200 rpm. Naphtha with a RON of 77 and its corresponding PRF surrogate were tested. The simulations captured the general trends observed in the experiments well.
X