Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Regional Tolerance to Impact Acceleration

1985-04-01
850852
Human tolerance data have been acquired gradually over the past 25 years and are available for several body regions. There is now sufficient information to design restraint systems which can prevent serious injuries to the user and which have low injury-causing potential. This paper reviews recent research on injury mechanisms and injury tolerance. Most of the research was aimed at solving problems in automotive safety systems. Specific tolerance data for the following body regions are presented: head, chest, spine and lower extremities.
Technical Paper

Lower Abdominal Tolerance and Response

1986-10-27
861878
Twelve unembalmed human cadavers were tested for lower abdominal injury tolerance and mechanical response. The impacts were in an anterior-to-posterior direction and the level of impact was primarily in the lower abdomen at the L3 level of the lumbar spine. The impactor mass was either 32 kg or 64 kg. The impactor face was a 25 mm diameter aluminum bar, with the long axis of the bar parallel to the width of the cadaver body. In this paper, mechanical response is presented in terms of force-time and penetration-time histories, and force vs. abdominal penetration cross-plots. Injury tolerance is described in terms of post-impact necropsy findings and AIS ratings. Based on our studies, the lower abdomen of the unembalmed human cadaver is much less stiff than is suggested by previous research, and the stiffness is velocity and mass dependent, as is suggested by the correlation coefficients presented in this paper. Force-time history and force-penetration response corridors are presented.
Technical Paper

Development of Numerical Models for Injury Biomechanics Research: A Review of 50 Years of Publications in the Stapp Car Crash Conference

2006-11-06
2006-22-0017
Numerical analyses frequently accompany experimental investigations that study injury biomechanics and improvements in automotive safety. Limited by computational speed, earlier mathematical models tended to simplify the system under study so that a set of differential equations could be written and solved. Advances in computing technology and analysis software have enabled the development of many sophisticated models that have the potential to provide a more comprehensive understanding of human impact response, injury mechanisms, and tolerance. In this article, 50 years of publications on numerical modeling published in the Stapp Car Crash Conference Proceedings and Journal were reviewed. These models were based on: (a) author-developed equations and software, (b) public and commercially available programs to solve rigid body dynamic models (such as MVMA2D, CAL3D or ATB, and MADYMO), and (c) finite element models.
X