Refine Your Search

Search Results

Viewing 1 to 14 of 14
Journal Article

A Numerical Simulation Study on Improving the Thermal Efficiency of a Spark Ignited Engine --- Part 1: Modeling of a Spark Ignited Engine Combustion to Predict Engine Performance Considering Flame Propagation, Knock, and Combustion Chamber Wall ---

2014-04-01
2014-01-1073
The first objective of this work is to develop a numerical simulation model of the spark ignited (SI) engine combustion, taking into account knock avoidance and heat transfer between in-cylinder gas and combustion chamber wall. Secondly, the model was utilized to investigate the potential of reducing heat losses by applying a heat insulation coating to the combustion chamber wall, thereby improving engine thermal efficiency. A reduction in heat losses is related to important operating factors of improving SI engine thermal efficiency. However, reducing heat losses tends to accompany increased combustion chamber wall temperatures, resulting in the onset of knock in SI engines. Thus, the numerical model was intended to make it possible to investigate the interaction of the heat losses and knock occurrence. The present paper consists of Part 1 and 2.
Journal Article

A Numerical Simulation Study on Improving the Thermal Efficiency of a Spark Ignited Engine --- Part 2: Predicting Instantaneous Combustion Chamber Wall Temperatures, Heat Losses and Knock ---

2014-04-01
2014-01-1066
The objective of this work is to develop a numerical simulation model of spark ignited (SI) engine combustion and thereby to investigate the possibility of reducing heat losses and improving thermal efficiency by applying a low thermal conductivity and specific heat material, so-called heat insulation coating, to the combustion chamber wall surface. A reduction in heat loss is very important for improving SI engine thermal efficiency. However, reducing heat losses tends to increase combustion chamber wall temperatures, resulting in the onset of knock in SI engines. Thus, the numerical model made it possible to investigate the interaction of the heat losses and knock occurrence and to optimize spark ignition timing to achieve higher efficiency. Part 2 of this work deals with the investigations on the effects of heat insulation coatings applied to the combustion chamber wall surfaces on heat losses, knock occurrence and thermal efficiency.
Journal Article

A Numerical Study on Detailed Soot Formation Processes in Diesel Combustion

2014-10-13
2014-01-2566
This study simulates soot formation processes in diesel combustion using a large eddy simulation (LES) model, based on a one-equation subgrid turbulent kinetic energy model. This approach was implemented in the KIVA4 code, and used to model diesel spray combustion within a constant volume chamber. The combustion model uses a direct integration approach with a fast explicit ordinary differential equation (ODE) solver, and is additionally parallelized using OpenMP. The soot mass production within each computation cell was determined using a phenomenological soot formation model developed by Waseda University. This model was combined with the LES code mentioned above, and included the following important steps: particle inception during which acenaphthylene (A2R5) grows irreversibly to form soot; surface growth with driven by reactions with C2H2; surface oxidation by OH radical and O2 attack; and particle coagulation.
Technical Paper

Improvement of NOx Reduction Rate of Urea-SCR System by NH3 Adsorption Quantity Control

2008-10-06
2008-01-2498
A urea SCR system was combined with a DPF system to reduce NOx and PM in a four liters turbocharged with intercooler diesel engine. Significant reduction in NOx was observed at low exhaust gas temperatures by increasing NH3 adsorption quantity in the SCR catalyst. Control logic of the NH3 adsorption quantity for transient operation was developed based on the NH3 adsorption characteristics on the SCR catalyst. It has been shown that NOx can be reduced by 75% at the average SCR inlet gas temperature of 158 deg.C by adopting the NH3 adsorption quantity control in the JE05 Mode.
Technical Paper

Experimental and Numerical Studies on Particulate Matter Formed in Fuel Rich Mixture

2003-10-27
2003-01-3175
Experimental and numerical studies on PAHs (Polycyclic Aromatic Hydrocarbons) and PM (Particulate Matters) formed in the fuel rich mixture have been conducted. In the experiment, neat n-heptane and n-heptane with benzene 25 % by weight were chosen as test fuels. In-cylinder gases produced by the fuel-rich HCCI (Homogeneous Charge Compression Ignition) combustion were directly sampled and analyzed by the use of GC/MS (Gas Chromatograph/Mass Spectro- metry), and PM emission was also measured by PM sampling system to reveal characteristics of PM formation. Numerical study has been also carried out using a zero dimensional combustion model combined with detailed chemistry. Furthermore, simple surface growth of soot particles was integrated into a detailed chemical kinetic model, and validated with the experimental data.
Technical Paper

Experimental Study on Unregulated Emission Characteristics of Turbocharged DI Diesel Engine with Common Rail Fuel Injection System

2003-10-27
2003-01-3158
In this study, we selected four unregulated emissions species, formaldehyde, benzene, 1,3-butadiene and benzo[a]pyrene to research the emission characteristics of these unregulated components experimentally. The engine used was a water-cooled, 8-liter, 6-cylinder, 4-stroke-cycle, turbocharged DI diesel engine with a common rail fuel injection system manufactured for the use of medium-duty trucks, and the fuel used was JIS second-class light gas oil, which is commercially available as diesel fuel. The results of experiments indicate as follows: formaldehyde tends to be emitted under the low load condition, while 1,3-butadiene is emitted at the low engine speed. This is believed to be because 1,3-butadiene decomposes in a short time, and the exhaust gas stays much longer in a cylinder under the low speed condition than under the high engine speed one. Benzene is emitted under the low load condition, as it is easily oxidized in high temperature.
Technical Paper

Numerical Study on Iso-Octane Homogeneous Charge Compression Ignition

2003-05-19
2003-01-1820
A numerical study was carried out to investigate auto-ignition characteristics during HCCI predicted by using zero and multi-dimensional models combined with detailed kinetics including 116 chemical species and 689 elementary reactions involving iso-octane. In the simulation, homogeneous charge compression ignition of the fuel was analyzed under the same conditions as encountered in internal combustion engines. The results elucidated the combustible region and oxidation process of iso-octane with the formation and destruction of various chemical species in the cylinder.
Technical Paper

A Numerical Study on Ignition and Combustion of a DI Diesel Engine by Using CFD Code Combined with Detailed Chemical Kinetics

2003-05-19
2003-01-1847
A CFD code combined with detailed chemical kinetics has been developed, linking with KIVA-3 and subroutines in CHEMKIN-II directly with some modifications. By using this CFD code, formation processes of combustion and exhaust gas emission for a turbo-charged DI diesel engine with common rail fuel injection system were simulated. As a result, formation processes of pollutant including NOx and soot were also considered according to the calculation results. The results show that NO caused by the extended Zeldvich mechanism accounted for about 88% of all NO, and it was found that there is a possibility to predict where and when soot will be formed by considering a simplified soot formation model.
Technical Paper

Experimental and Numerical Studies on Soot Formation in Fuel Rich Mixture

2003-05-19
2003-01-1850
Experimental and numerical studies are conducted on the formation of soot and Polycyclic Aromatic Hydrocarbons (PAHs), regarded as precursors of soot, during the combustion of fuel-rich homogeneous n-heptane mixtures. In-cylinder gases are sampled directly through a high-speed solenoid valve in engine tests, to be analyzed by GC/MS for qualifying PAHs. Smoke concentration is also measured. A numerical study is carried out by using a zero-dimensional model combined with detailed chemical kinetics. The experiments and computations show that PAHs can be predicted qualitatively by means of the present kinetic model.
Technical Paper

The Effects of Fuel Temperature on a Direct Injection Gasoline Spray in a Constant Volume Chamber

2003-05-19
2003-01-1810
Fuel temperature in the injector of small direct injection gasoline engine is high. On some conditions it is higher than saturated temperature. Over saturated temperature spray characteristics greatly change. In order to predict in-cylinder phenomena accurately, it is important to understand spray behavior and mixture process above saturated temperature. Therefore spray shape, mixture formation process and Sauter mean radius were (SMR) measured in a constant volume chamber. And based on the measurement result initial spray boundary conditions were arranged so that spray characteristics over saturated temperature could be represented by using CFD code KIVA-3[1]. Moreover KIVA-3 code was combined with detailed chemical kinetics code Chemkin II to predict combustion products. [2] Calculated combustion process was validated with visualization of chemiluminescence. As a result, spray shape and penetration length have good agreement with measured ones for each fuel temperature.
Technical Paper

Control Strategy for Urea-SCR System in Single Step Load Transition

2006-10-16
2006-01-3308
Urea-SCR system has a high NOx reduction potential in the steady-state diesel engine operation. In complicated transient operations, however, there are certain problems with the urea-SCR system in that NOx reduction performance degrades and adsorbed NH3 would be emitted. Here, optimum urea injection methods and exhaust bypass control to overcome these problems are studied. This exhaust bypass control enables NO/NOx ratio at the inlet of SCR catalyst to be decreased widely, which prevents over production of NO2 at the pre-oxidation catalyst. Steady-state and simple transient engine tests were conducted to clarify NOx reduction characteristics when optimum urea injection pattern and exhaust bypass control were applied. In simple transient test, only the engine load was rapidly changed for obtaining the fundamental knowledge concerning the effect of those techniques.
Technical Paper

Numerical Simulation Accounting for the Finite-Rate Elementary Chemical Reactions for Computing Diesel Combustion Process

2005-09-11
2005-24-051
To facilitate research and development of diesel engines, the universal numerical code for predicting diesel combustion has been favored for the past decade. In this paper, the finite-rate elementary chemical reactions, sometimes called the detailed chemical reactions, are introduced into the KIVA-3V code through the use of the Partially Stirred Reactor (PaSR) model with the KH-RT break-up, modified collision and velocity interpolation models. Outcomes were such that the predicted pressure histories have favorable agreements with the measurements of single and double injection cases in the diesel engine for use in passenger cars. Thus, it is demonstrated that the present model will be a useful tool for predicting ignition and combustion characteristics encountered in the cylinder.
Technical Paper

Numerical Simulation on Soot Formation in Diesel Combustion by Using a CFD Code Combined with a Parallelized Explicit ODE Solver

2014-10-13
2014-01-2567
The objective of the present study is to analyze soot formation in diesel engine combustion by using multi-dimensional combustion simulations with a parallelized explicit ODE solver. Parallelized CHEMEQ2 was used to perform detailed chemical kinetics in KIVA-4 code. CHEMEQ2 is an explicit stiff ODE solver developed by Mott et al. which is known to be faster than traditional implicit ODE solvers, e.g., DVODE. In the present study, about eight times faster computation was achieved with CHEMEQ2 compared to DVODE when using a single thread. Further, by parallelizing CHEMEQ2 using OpenMP, the simulations could be run not only on calculation servers but also on desktop machines. The computation time decreases with the number of threads used. The parallelized CHEMEQ2 enabled combustion and emission characteristics, including detailed soot formation processes, to be predicted using KIVA-4 code with detailed chemical kinetics without the need for reducing the reaction mechanism.
Technical Paper

A Fundamental Study on Combustion Characteristics in a Pre-Chamber Type Lean Burn Natural Gas Engine

2019-09-09
2019-24-0123
Pre-chamber spark ignition technology can stabilize combustion and improve thermal efficiency of lean burn natural gas engines. During compression stroke, a homogeneous lean mixture is introduced into pre-chamber, which separates spark plug electrodes from turbulent flow field. After the pre-chamber mixture is ignited, the burnt jet gas is discharged through multi-hole nozzles which promotes combustion of the lean mixture in the main chamber due to turbulence caused by high speed jet and multi-points ignition. However, details mechanism in the process has not been elucidated. To design the pre-chamber geometry and to achieve stable combustion under the lean condition for such engines, it is important to understand the fundamental aspects of the combustion process. In this study, a high-speed video camera with a 306 nm band-pass filer and an image intensifier is used to visualize OH* self-luminosity in rapid compression-expansion machine experiment.
X