Refine Your Search

Topic

Search Results

Journal Article

Effect of Multifunctional Fuel Additive Package on Fuel Injector Deposit, Combustion and Emissions using Pure Rape Seed Oil for a DI Diesel

2009-11-02
2009-01-2642
This work investigates the effect of a multifunctional diesel fuel additive package used with RapeSeed Oil (RSO) as a fuel in a DI heavy duty diesel engine. The effects on fuel injectors’ cleanliness were assessed. The aim was to maintain combustion performance and preventing the deterioration of exhaust emissions associated with injector deposit build up. Two scenarios were investigated: the effect of deposit clean-up by a high dose of the additive package; and the effect of deposit prevention using a moderate dose of the additive package. Engine combustion performance and emissions were compared for each case against use of RSO without any additive. The engine used was a 6 cylinder, turbocharged, intercooled Perkins Phaser Engine, fitted with an oxidation catalyst and meeting the Euro II emissions limits. The tests were conducted under steady state conditions of 23kW and 47kW power output at an engine speed of 1500 rpm.
Journal Article

Determination of GHG Emissions, Fuel Consumption and Thermal Efficiency for Real World Urban Driving using a SI Probe Car

2014-04-01
2014-01-1615
A SI probe car, defined here as a normal commercial car equipped with GPS, in-vehicle FTIR tailpipe emission measurement and real time fuel consumption measurement systems, and temperature measurements, was used for measuring greenhouse gas emissions including CO2, N2O and CH4 under real world urban driving conditions. The vehicle used was a EURO4 emission compliant SI car. Two real world driving cycles/routes were designed and employed for the tests, which were located in a densely populated area and a busy major road representing a typical urban road network. Eight trips were conducted at morning rush hours, day time non-peak traffic periods and evening off peak time respectively. The aim is to investigate the impacts of traffic conditions such as road congestion, grade and turnings on fuel consumption, engine thermal efficiency and emissions.
Journal Article

Influence of Cold Start and Ambient Temperatures on Greenhouse Gas (GHG) Emissions, Global Warming Potential (GWP) and Fuel Economy for SI Car Real World Driving

2010-04-12
2010-01-0477
The transport sector is one of the major contributors to greenhouse gas emissions. This study investigated three greenhouse gases emitted from road transport using a probe vehicle: CO₂, N₂O and CH₄ emissions as a function of cold start and ambient temperatures. A real-world driving cycle has been developed at Leeds and referred as LU-BS, which has an urban free flow driving pattern. The test vehicle was driven on the same route by the same driver on different days with different ambient temperatures. All the journeys were started from cold. An in-vehicle FTIR emission measurement system was installed on a EURO2 emission compliance SI car for emissions measurement at a rate of 0.5 Hz. This emission measurement system was calibrated on a standard CVS measurement system and showed an excellent agreement on the CO₂ measurement with the CVS results. The N₂O and CH₄ were calibrated by calibration gas bottles.
Journal Article

Speciation of Nitrogen Compounds in the Tailpipe Emissions from a SI Car under Real World Driving Conditions

2014-10-13
2014-01-2812
The tailpipe exhaust emissions were measured using a EURO4 emissions compliant SI car equipped with on-board measurement systems such as a FTIR system for gaseous emission, a differential GPS for velocity, altitude and position, thermal couples for temperatures, and a MAX fuel meter for transient fuel consumption. Various nitrogen species emissions (NO, NO2, NOx, NH3, HCN and N2O) were measured at 0.5 Hz. The tests were designed and employed using two real world driving cycles/routes representing a typical urban road network located in a densely populated area and main crowded road. Journeys at various times of the day were conducted to investigate traffic conditions impacts such as traffic and pedestrian lights, road congestion, grade and turning on emissions, engine thermal efficiency and fuel consumption. The time aligned vehicle moving parameters with Nitrogen pollutant emission data and fuel consumption enabled the micro-analysis of correlations between these parameters.
Technical Paper

Particle Emissions and Size Distribution across the DPF from a Modern Diesel Engine Using Pure and Blended GTL Fuels

2020-09-15
2020-01-2059
A Gas to liquid (GTL) fuel was investigated for its combustion and emission performance in an IVECO EURO5 DI diesel engine with a DOC (Diesel Oxidation Catalyst) and DPF (Diesel Particle Filter) installed. The composition of the GTL fuel was analyzed by GC-MS (gas chromatography-mass spectrometry) and showed the carbon distribution of 8-20. Selected physical properties such as density and distillation were measured. The GTL fuel was blended with standard fossil diesel fuel by ratios of diesel/GTL: 100/0, 70/30, 50/50, 30/70 and 0/100. The engine was equipped with a pressure transducer and crank angle encoder in one of its cylinders. The properties of ignition delay and maximum in-cylinder pressure were studied as a function of fraction of the GTL fuel. Particle emissions were measured using DMS500 particle size instrument at both upstream (engine out) and downstream of the DPF (DPF out) for particle number concentrations and size distribution from 5 nm to 1000 nm.
Technical Paper

An Improved Heat Release Rate (HRR) Model for the Analysis of Combustion Behaviour of Diesel, GTL, and HVO Diesel

2020-09-15
2020-01-2060
Heat Release Rate (HRR) analysis is indispensable in engine research. The HRR of Internal Combustion Engines (ICEs) is most sensitive to gamma (γ). The proposed HRR models in literature were largely based on γ expressed as functions of temperature. However, γ is depended on temperature as well as the excess air ratio (λ). In this work, an improved HRR model based on γ(T, λ) was used to investigate the combustion behaviour of standard diesel, Gas-to-Liquid (GTL) diesel and Hydrotreated Vegetable Oil (HVO) diesel in a 96 kW, multiple fuel injection, Euro V, Direct Injection (DI) engine. The improved HRR model (Leeds HRR model) was validated for the alternative fuels by comparing the fuel masses predicted by the model to the measured fuel masses. The fuel masses predicted by the Leeds HRR model were also compared to the predictions from four HRR models that were based on γ(T).
Journal Article

VOC Emissions and OFP Assessment for Two Real World Urban Driving Cycles using a EURO 2 SI Car

2008-04-14
2008-01-1303
A FTIR in-vehicle on-road emission measurement system was installed in a EURO2 emissions compliant SI (Spark Ignition) car to investigate exhaust Volatile Organic Compounds (VOC) emissions and Ozone Formation Potential (OFP) under different urban traffic conditions. The real time fuel consumption and vehicle traveling speed were measured and logged. The temperatures were measured along the exhaust pipe so as to monitor the thermal characteristics and efficiency of the catalyst. Two real world driving cycles were developed with different traffic conditions. One (West Park Loop cycle) was located in a quiet area with few traffic interference and the other one (Hyde Park Loop cycle) was in a busy area with more traffic variations. The test car was pre-warmed before each test to eliminate cold start effect. The driving parameters were analyzed for two real world cycles.
Technical Paper

Evaluation of a FTIR Emission Measurement System for Legislated Emissions Using a SI Car

2006-10-16
2006-01-3368
A series of chassis dynamometer test trials were conducted to assess the performance of a Fourier Transform Infra Red (FTIR) system developed for on-road vehicle exhaust emissions measurements. Trials used a EURO 1 emission compliant SI passenger car which, alongside the FTIR, was instrumented to allow the routine logging of engine speed, road speed, throttle position, air-fuel ratio, air flow and fuel flow in addition to engine, exhaust and catalyst temperatures. The chassis dynamometer facility incorporated an ‘industry standard’ measurement system comprising MEXA7400 gas analyzer and CVS bag sampling which was the ‘benchmark’ for the evaluation of FTIR legislated gas-phase emissions (CO, NOx, THC and CO2) measurements. Initial steady state measurements demonstrated strong correlations for CO, NOx and THC (R2 of 0.99, 0.97 0.99, respectively) and a good correlation for CO2 (R2 = 0.92).
Technical Paper

Analysis of Driving Parameters and Emissions for Real World Urban Driving Cycles using an on-board Measurement Method for a EURO 2 SI car

2007-07-23
2007-01-2066
A FTIR in-vehicle on-road emission measurement system was installed in a EURO 2 emissions compliant SI car to investigate exhaust emissions under different urban traffic conditions. The real time fuel consumption and vehicle traveling speed was measured and logged. The temperatures were measured along the exhaust pipe so as to monitor the thermal characteristics and efficiency of the catalyst. Two real world driving cycles were developed with different traffic conditions. One (WP cycle) was located in a quiet area with few traffic interference and the other one (HPL cycle) was in a busy area with more traffic variations. The test car was pre-warmed before each test to eliminate cold start effect. The driving parameters were analyzed for two real world cycles. The WP cycle had higher acceleration rate, longer acceleration mode and shorter steady speed driving mode and thus harsher than the HPL cycle.
Technical Paper

The Use of a Water/Lube Oil Heat Exchanger and Enhanced Cooling Water Heating to Increase Water and Lube Oil Heating Rates in Passenger Cars for Reduced Fuel Consumption and CO2 Emissions During Cold Start.

2007-07-23
2007-01-2067
Lubricating oil takes all of the NEDC test cycle time to reach 90°C. Hence, this gives high friction losses throughout the test cycle, which leads to a significant increase in the fuel consumption. In real world driving, particularly in congested traffic, it is shown that lube oil warm-up is even slower than in the NEDC. Euro 1, 2 and 4 Ford Mondeo water and oil warm up rates in real world urban driving were determined and shown to be comparable with the results of Kunze et al. (2) for a BMW on the NEDC. This paper explores the use of forced convective heat exchange between the cooling water and the lube oil during the warm-up period. A technique of a step warm-up of the engine at 32 Nm at 2000 rpm (35% of peak power) was used and the engine lube oil and water temperature monitored. It was shown that the heat exchanger results in an increase in lube oil temperature by 4°C, which increased to 10°C if enhanced heat transfer to the water was used from an exhaust port heat exchanger.
Technical Paper

Study of thermal characteristics, fuel consumption and emissions during cold start using an on-board measuring method for SI car real world urban driving

2007-07-23
2007-01-2065
Exhaust emissions were measured under real world urban driving conditions using a set of in-vehicle FTIR emission measurement system, which is able to measure 65 emission components simultaneously at a rate of 0.5 Hz. The test vehicle was a EURO 2 emission compliant SI car equipped with real time fuel consumption measurement and temperature measurement along the exhaust pipe across the catalyst allowing the matching of thermal characteristics to emission profiles and monitor fuel consumption. The temperature profile indicated that the light-off of the catalyst took about 150∼200 seconds. The warm up of the lubricating oil and coolant water required a longer time than the catalyst did. The impact of ambient temperatures on lubricating oil and coolant water warm ups was greater than that on the light-off of the catalyst. The heat loss and energy balance were calculated during the whole cycle period. The influence of cold start on fuel consumption was investigated.
Technical Paper

Impact of Traffic Conditions and Road Geometry on Real World Urban Emissions Using a SI Car

2007-04-16
2007-01-0308
A precision in-vehicle tail-pipe emission measurement system was installed in a EURO1 emissions compliant SI car and used to investigate the variability in tail-pipe emission generation at an urban traffic junction and uphill/downhill road, and thereby the impact of road topography on emissions. Exhaust gas and skin temperatures were also measured along the exhaust pipe of the instrumented vehicle, so the thermal characteristics and the efficiency of the catalyst could be monitored. Different turning movements (driving events) at the priority T-junction were investigated such as straight, left and right turns with and without stops. The test car was run until hot stable operating conditions were achieved before each test, thereby negating cold start effects.
Technical Paper

Characterization of Regulated and Unregulated Cold Start Emissions for Different Real World Urban Driving Cycles Using a SI Passenger Car

2008-06-23
2008-01-1648
An in-vehicle FTIR emission measurement system was used to investigate the exhaust emissions under different real world urban driving conditions. Five different driving cycles were developed based on real world urban driving conditions including urban free flow driving, junction maneuver, congested traffic and moderate speed cruising. The test vehicle was a EURO 2 emission compliant SI car equipped with temperature measurement along the exhaust pipe across the catalyst and real time fuel consumption measurement system. Both regulated and non-regulated emissions were measured and analyzed for different driving cycles. All journeys were started from cold. The engine warm up features and emissions as a function of engine warm up for different driving conditions were investigated.
Technical Paper

Comparisons of the Exhaust Emissions for Different Generations of SI Cars under Real World Urban Driving Conditions

2008-04-14
2008-01-0754
EURO 1, 2 3 and 4 SI (Spark Ignition) Ford Mondeo passenger cars were compared for their real world cold start emissions using an on-board FTIR (Fourier Transform Infrared) exhaust emission measurement system. The FTIR system can measure up to 65 species including both regulated and non-regulated exhaust pollutants at a rate of 0.5 Hz. The driving parameters such as speed, fuel consumption and air/fuel ratio were logged. The coolant water, lube oil and exhaust temperatures were also recorded. A typical urban driving cycle including a loop and a section of straight road was used for the comparison test as it was similar to the legislative ECE15 urban driving cycle. Exhaust emissions were calculated for the whole journey average and compared to EU legislation. The cold start transient emissions were also investigated as a separate parameter and this was where there was the greatest difference between the four vehicles.
Technical Paper

The Influence of Fuel Pre-Heating on Combustion and Emissions with 100% Rapeseed Oil for a DI Diesel Engine

2009-04-20
2009-01-0486
This work investigates the heating of unprocessed rapeseed oil as a means to improve fuel delivery by reducing the fuel viscosity, and to assess the effects on combustion performance. The results show that a simple low power heater with thermal insulation around the fuel line and pump can effectively raise the operational fuel temperature at delivery to the pump. The results show that even with a moderate temperature increase, the fuel flow limitations with rapeseed oil are reduced and the legislated gaseous emissions are reduced at steady state conditions. As one of the main reasons for the conversion of straight oils to the methyl ester, ie biodiesel, is to reduce the viscosity, this work shows that heating the oil can have a similar effect. An emissions benefit is observed with biodiesel compared to rapeseed oil but this is not large. There is also a significant greenhouse gas and cost benefit associated with straight vegetable oils.
Technical Paper

Comparison of Real World Emissions in Urban Driving for Euro 1-4 Vehicles Using a PEMS

2009-04-20
2009-01-0941
An on-board emission measurement system (PEMS), the Horiba OBS 1300, was installed in Euro 1-4 SI cars of the same model to investigate the impact of vehicle technology on exhaust emissions, under urban driving conditions with a fully warmed-up catalyst. A typical urban driving loop cycle was used with no traffic loading so that driver behavior without the influence of other traffic could be investigated. The results showed that under real world driving conditions the NOx emissions exceeded the legislated values and only at cruise was the NOx emissions below the legislated value. The higher NOx emissions during real-world driving have implications for higher urban Ozone formation. With the exception of the old EURO1 vehicle, HC and CO emissions were under control for all the vehicles, as these are dominated by cold start issues, which were not included in this investigation.
Technical Paper

Proceedings of Real Driving Emission (RDE) Measurement in China

2018-04-03
2018-01-0653
Light-duty China-6, which is among the most stringent vehicle exhaust emission standards globally, mandates the monitoring and reporting of real driving emissions (RDE) from July, 2023. In the process of regulation promulgation and verification, more than 300 RDE tests have been performed on over 50 China-5 and China-6 certified models. This technical paper endeavors to summarize the experience of RDE practice in China, and discuss the impacts of some boundary conditions (including vehicle dynamic parameters, data processing methods, hybrid propulsion and testing altitude) on the result of RDE measurement. In general, gasoline passenger cars confront few challenges to meet the upcoming RDE NOx requirement, but some China-5 certified samples, even powered by naturally-aspirated engines may have PN issues. PN emissions from some GDI-hybrid powertrain systems also need further reduction to meet China-6 RDE requirements.
Technical Paper

Analysis of Various Driving Parameters and Emissions for Passenger Cars Driven With and Without Stops at Intersections under Different Test Cycles

2012-04-16
2012-01-0880
Different driving test cycles, the Leeds-West Park (LWP) loop and the Leeds-High Park (LHP) or HPL-A and B (Leeds-Hyde Park Loop-A or B, hereafter referred as HPL-A or B cycle) loop were selected for this urban intersection research and results are presented in this study. Different emissions-compliant petrol passenger cars (EURO 1, 2, 3 and 4) were compared for their real-world emissions. A reasonable distance of steady state speed was needed and for the analysis made in this paper were chosen vehicle speeds at ~20, ~30 and ~40 km/h. Specific spot of periods of driving at the speeds mentioned above were identified, then the starting and ending point was found and the total emissions in g for that period divided by the distance was calculated. A typical urban driving cycle including a loop and a section of straight road was used for the comparison test as it was similar to the legislative ECE15 urban driving cycle.
Technical Paper

Real World Cold Start Emissions from a Diesel Vehicle

2012-04-16
2012-01-1075
This study uses on-board measurement systems to analyze emissions from a diesel engine vehicle during the cold start period. An in-vehicle FTIR (Fourier Transform Inferred) spectrometer and a Horiba on-board measurement system (OBS-1300) were installed on a EURO3 emission-compliant 1.8 TDCi diesel van, in order to measure the emissions. Both regulated and non-regulated emissions were measured, along with an analysis of the NO/NO₂ split. A VBOX GPS system was used to log coordinates and road speed for driving parameters and emission analysis. Thermal couples were installed along the exhaust system to measure the temperatures of exhaust gases during cold start. The real-time fuel consumption was measured. The study also looks at the influence of velocity on emissions of hydrocarbons (HCs) and NOx. The cold start period of an SI-engine-powered vehicle, was typically around 200 seconds in urban driving conditions.
Technical Paper

Application of a Portable FTIR for Measuring On-road Emissions

2005-04-11
2005-01-0676
The objective of this work was the development of an on-road in-vehicle emissions measurement technique utilizing a relatively new, commercial, portable Fourier Transform Infra-Red (FTIR) Spectrometer capable of identifying and measuring (at approximately 3 second intervals) up to 51 different compounds. The FTIR was installed in a medium class EURO1 spark ignition passenger vehicle in order to measure on-road emissions. The vehicle was also instrumented to allow the logging of engine speed, road speed, global position, throttle position, air-fuel ratio, air flow and fuel flow in addition to engine, exhaust and catalyst temperatures. This instrumentation allowed the calculation of mass-based emissions from the volume-based concentrations measured by the FTIR. To validate the FTIR data, the instrument was used to measure emissions from an engine subjected to a real-world drive cycle using an AC dynamometer.
X