Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 22068
2010-10-25
Technical Paper
2010-01-2166
Seung Yang, Kyeong Lee, Hwansoo Chong
At the current stage of engine technology, diesel engines typically require diesel particulate filter (DPF) systems to meet recent particulate emissions standards. To assure the performance and reliability of DPF systems, profound understanding of filtration and regeneration mechanisms is required. Among extensive efforts for developing advanced DPF systems, the development of effective thermal management strategies, which control the thermal runaway taking place in oxidation of an excess amount of soot deposit in DPF, is quite challenging. This difficulty stems mainly from lack of sufficient knowledge and understanding about DPF regeneration mechanisms, which need detailed information about oxidation of diesel particulate matter (PM). Therefore, this work carried out a series of oxidation experiments of diesel particulates collected from a DPF on a diesel engine, and evaluated the oxidation rates of the samples using a thermo-gravimetric analyzer (TGA).
2010-10-25
Technical Paper
2010-01-2171
Shuji Fujii, Tsuyoshi Asako
Ash accumulation is a considerable factor for long-term Diesel Particulate Filter (DPF) performance. Ash accumulation reduces the open frontal area (OFA) and plugs the surface pores. As a result, DPF back pressures with no soot (hereinafter “initial DPF back pressure”) rise. At the same time, DPF back pressures with soot (hereinafter “sooted DPF back pressure”) fall [ 1 , 2 , 3 , 4 ]. Then sooted DPF back pressures rise after the reductions of the certain ranges [ 1 , 3 , 4 ]. It is known that DPF back pressure behaviors change variously by ash loading like this. The understanding of DPF back pressure behaviors with ash accumulation is indispensable for proper after-treatment system management. Ash accumulation progresses slowly and gradually in DPF while using of vehicles. Because of the slowness, the field surveys require a few years at least.
2010-10-25
Journal Article
2010-01-2197
Ian Whelan, Stephen Samuel, David Timoney, Ahmed Hassaneen
This study aims to identify the factors that control particulate matter (PM) formation and size distribution in direct-injection spark-ignition (DISI) engines. The test engine used for this research was a 1.6 litre, wall-guided DISI, turbocharged, intercooled, in-line 4 cylinder, Euro IV engine. The exhaust sampling point was before the catalytic converter, i.e. engine-out emissions were measured. The first part of this paper investigates the characteristics of PM number and size distribution of DISI and throttle body injected (TBI) engines. The second part investigates the effect of combustion characteristics of DISI engines on the number of 5nm and 10nm (nucleation) and 200nm (accumulation) PM. A statistical analysis of the coefficient of variance (COV) of the maximum rate of pressure rise (RPmax) over 100 cycles was performed against the COV of 5nm, 10nm and 200nm total particle number.
2010-10-25
Technical Paper
2010-01-2207
Kenichi Akiyama, Akemi Nakayama
Aldehydes and ketones are known as one of the hazardous air pollutants. Usually, acidified 2,4-dinitrophenylhydrazine (DNPH) solution, or DNPH-impregnated cartridges are used for automotive exhaust carbonyls collection. Then, aldehydes and ketones combined with DNPH are analyzed by HPLC/UV (High Performance Liquid Chromatography/ Ultra Violet Detection). DNPH cartridge is used widely for a good point of the handling although handling of DNPH solution is not so convienient. However, the analytical result of acrolein using DNPH cartridge was known as the low reliability. Acrolein-DNPH is changed to acrolein-DNPH-DNPH in the cartridge with acid atmosphere before extraction. And then, acrorein-DNPH-DNPH is changed to acrorein-DNPH-DNPH-DNPH with an acid atmosphere. As a result of such chemical reaction before extraction, the acrolein-DNPH is detected to low concentration. We found that at the low temperature condition, acrolein-DNPH concentration decrease speed is held down.
2010-10-25
Technical Paper
2010-01-2224
Efthimios Zervas, Eleni Panousi
Methane is a simplest hydrocarbon and is a gas with a strong greenhouse effect. Methane is emitted from the exhaust gas of passenger cars, among other hydrocarbons. This work examines the emission of methane from several European passenger cars. The impact of fuel (gasoline, diesel, compressed natural gas), of the emission technology/driving cycle (Euro1, Euro2, Euro3, Tax Incentives Euro4, Euro4 and some non European regulations) and of mileage on the methane emissions is studied in this work. For all the above parameters, the emission of methane, but also its percentage in the other hydrocarbons is analyzed. The results show a significant impact of all the above parameters on methane emissions.
2010-10-25
Technical Paper
2010-01-2226
Efthimios Zervas
Passenger cars emit exhaust emissions of regulated pollutants (CO, HC, NOx in the case of gasoline engines and also particulate matter (PM) in the case of diesel engines); however, they also emit several other pollutants which are not regulated (non-regulated pollutants, NRP). These pollutants are emitted in much lower concentrations than the regulated ones; however, they are sometimes much more dangerous for the environment and the human health. This work shows the emissions of several non-regulated pollutants of gasoline and diesel European passenger cars tested on the New European Driving Cycle. The pollutants studied in this work are individual HC and HC families, N₂O and NH₃, carbonyl compounds, PAH and nitro-PAH. The impact of emission technology from Euro1 to Tax Incentives Euro4, which are related with the emission level of regulated pollutants, and of mileage are presented and discussed.
2010-09-28
Technical Paper
2010-32-0046
P. Shanmugam, T. Kathiresan, N. Senthilnathan, AS. Anbukarasu, R. Vinoth Balaram, K. Prabu, MG. Naveenkumar
Pollutants are harmful to human and other living beings on the earth. Thus emission reduction plays a very important role in the survival of living beings. Hydrocarbons (HC), Carbon monoxide (CO), Nitrogen oxides (NOx) are the emission constituents which results in smog, respiratory problems in human beings, acid rain respectively. Hence, Indian government has taken necessary steps to reduce these emissions and imposed various level of norms like BSI, BSII and BSIII on 2/3 wheeler industries in the year 2000, 2005 and 2010 respectively. Presently in India, BSII is in force and from October 2010 BSIII will be introduced. BSIII 3 wheeler norm, the CO emission level is reduced by 44.4% and HC+NOx is reduced by 37.5%. The main objective of this work is to reduce the emissions like HC, which is due to unburnt fuels, NOx, which is due to high engine pressures and temperatures and CO, which is a byproduct of incomplete combustion.
2010-09-28
Technical Paper
2010-32-0047
Tim Hands, Alexander John Finch, Jonathan Symonds, Chris Nickolaus
This paper describes various aspects of the particle emissions from a 2-stroke motorbike. It gives an indication of issues which may face emissions engineers if (or when) such vehicles become subject to particulate legislation similar to that for light duty vehicles. A DMS500 fast particulate spectrometer was used to examine transient particle emissions from the CVS tunnel for two 2-stroke motorbikes over the European ECE R47 and urban New European Drive Cycle (NEDC) drive cycles. One was direct injected and the other was carburretted. Transient size spectra and number data from the output of a two stage, Particulate Measurement Program (PMP) compliant heated dilution system are presented for the carburretted 2-stroke motorbike running the urban phase of the NEDC. Estimates of the particle number emissions relative to the Euro 5b light-duty diesel vehicle legislation are presented.
2010-09-28
Technical Paper
2010-32-0042
Scott A. Miers, Christopher A. Green, Jay S. Meldrum, Christine Lundberg, William Silvis, Harry Pankratz
Recent increases in emissions regulations within the snowmobile industry have led to significant advancements in fuel, exhaust, and control systems on snowmobiles. However, particulate matter is currently an unregulated exhaust component of snowmobile engines. The measurement of dry soot as well as particulate matter from snowmobiles is the focus of this paper. Two industry-representative snowmobiles were chosen for this research which included a 2006 Yamaha Nytro carbureted four-stroke and a 2009 Ski-Doo MX-Z direct-injected two-stroke. Measurements for each snowmobile included gaseous emissions (CO₂, CO, NOx, O₂, and THC), particulate matter collected on quartz filters, and dry soot measured using an AVL Micro Soot Sensor. Each snowmobile was tested over the industry-standard five-mode emissions certification test cycle to determine the emissions, dry soot, and particulate matter levels from idle to wide open throttle (full-load).
2010-09-28
Journal Article
2010-32-0044
Katsumasa Kiuchi, Ryo Suzuki, Hiroaki Yano, Shintaro Yagi, Akihiko Tomoda
We investigated the catalytic performance of a porous-structured paper coated with precious metals such as palladium (Pd) and others. A honeycomb-shaped paper catalyst was successfully produced by paper making techniques, which are often used in the friction material manufacturing process for clutch system and the following newly developed molding process. As a new catalyst on the paper, Pd supported on Mn-substituted lanthanum hexa-aluminate (LaMnAl₁₁O₁₉, magnetoplumbite, MPB) crystallites with appropriate surface area was prepared and the catalytic performance, such as exhaust purification ability, was assessed using a model gas containing HC (hydrocarbon), CO (carbon monoxide) and NO (nitrogen oxide) gas. The results showed that Pd/MPB did not deteriorate even after 180 h aging at 1000°C. We concluded that the MPB has good potential as a catalyst component material for internal combustion engines because of the high thermal stability.
2010-09-28
Technical Paper
2010-32-0040
Jing Qin, Manqun Lin, Liang Zhao, Bin Jia, Peng Liu
Gasoline-fueled small engines have been developed predominantly for power by using fuel-rich combustion, and unburned HC is usually a consequence of inadequate mixing and combustion of the charge. In principle, a straightforward way to reduce HC emissions is to run at an almost stoichiometric air-fuel ratio while NOx emission become problematic, namely a tradeoff exists between the amount of HC and NOx emission, especially at high engine loads. Cooled exhaust gas recirculation (EGR) is a common way to control in-cylinder NOx production when burning stoichiometric or even leaner mixture. In this paper, experimental investigations were conducted on a small off-road gasoline engine to study the effect of EGR system on the engine-out emission especially the unburned HC and NOx.
2010-09-28
Technical Paper
2010-32-0038
Jordan Szafranski, Mike Galligan
Exhaust catalyst deactivation in small, handheld, 2-stroke engines is an issue that is faced quite frequently in efforts to improve or maintain catalyst performance but reduce cost. Fresh catalyst performance is rarely an issue, however, sustaining this performance for the specified useful life period of 50, 125, or 300 hours is where challenges start to arise. Our program goal was to develop and demonstrate a commercially viable catalyst which is capable of meeting regulatory and internal requirements with a deterioration factor (DF) near or below 1.0 over a 300 hour useful life period. A secondary objective was to utilize decreased quantities of platinum group metals (PGM) to reduce the cost relative to our reference catalyst. To achieve this, our focus was to reduce poisoning caused by exhaust byproducts and exhaust borne contaminants through a collaboration of catalyst advances and exhaust system design.
2010-09-28
Technical Paper
2010-32-0039
Manqun Lin
Some motorcycles, such as 3 wheels and scooters, have dual high exhaust characteristics on CO and NOx. A mechanical exhaust gas recirculation (EGR in brief) system has been developed for motorcycles and attempt to reduce NOx exhaust emission as a valuable method. Mechanical control valve are driven by intake vacuum of the engine. Appropriate amount of exhaust gas are return to engine intake system during acceleration process and high speed condition. This system also can shut down EGR at deceleration and idling speed condition. Then, NOx and fuel consumption reduction performance was confirmed by means of experimental methods.
2010-09-28
Journal Article
2010-32-0054
Jeff R. Wasil, Justin Johnson, Rahul Singh
In pursuit of reducing dependencies on foreign oil coupled with U.S. renewable fuel standards and an overall focus and interest in greenhouse gas emissions, investigations continue on feasibility of replacement biologically derived fuels such as ethanol and butanol. Majority of existing recreational products such as marine outboard engines, boats, personal watercraft, all terrain vehicles and snowmobiles are carbureted or operate open-loop, meaning the engine does not have the capability to sense air-fuel ratio. Ethanol has a specific energy content that is less than gasoline. Without means to compensate for air-fuel ratio requirements of specific fuels, open-loop engines may suffer from a condition known as enleanment, in which catastrophic engine failure may result. On the contrary, butanol has specific energy content closer to that of gasoline, suggesting open-loop engines may be less prone to negative effects of increased biologically derived fuel concentrations in gasoline.
2010-09-28
Technical Paper
2010-32-0048
Jih Houh Lee, Chew Liang Chong, Horizon Gitano
It is difficult to obtain accurate fuel consumption data for privately owned in-use vehicles. This study aims to directly measure fuel consumption and the various parameters which affect fuel consumption from in-use vehicles via various methods. Motorcycle power demands were determined from measured frontal area, vehicle mass, rider and payload mass, tire pressure. Both worst case and best case scenarios of load, tire pressure and frontal area were measured for aerodynamic and rolling resistance via the roll-down technique. Measured data points for typical motorcycles fall within the established best- and worst-case scenarios, and an “average case” is selected for vehicle testing. Several common motorcycles models are tested for their fuel consumption at the established “average load” case. Additionally, this typical load case is coupled with the ECER40 drive cycle pattern for estimates of field fuel consumption from chassis dynamometer testing.
2010-10-19
Technical Paper
2010-01-2311
Eric A. Fedewa, Charles Chesbrough
There is a profound sense of urgency among leading industrialized nations: governments recognize that massive reductions in carbon emissions are required if we are to limit climate change in an era of ever-increasing global population growth and increasing affluence. They may also believe that the auto industry can deliver more carbon reduction faster at a lower absolute and political cost than other industries. Continued investment on the part of governments and the auto industry to create a viable model for sustainable mobility and vehicle electrification in the 2010 – 2020 timeframe should help drive transport-related carbon emissions down to the 60-90 grams/kilometer level, from 130-155 grams today, and contribute to an overall 20-30 percent reduction in greenhouse-gas emissions.
2010-10-25
Journal Article
2010-01-2113
Benjamin Akih-Kumgeh, Jeff Bergthorson
The quest for sustainable alternatives to fossil fuels leads to a growing diversification of the molecular structures of fuel sources. Since ignition is a vital property in the choice of an engine combustion concept, the ability to tailor the ignition behavior of various fuel sources by means of fuel additives is expected to aid the development of fuel-flexible engines. Ethanol is one of the biofuels with a potential to play an important role in the transportation fuel mix of the future. One of the final processes during ethanol production involves distillation in order to minimize the water content. Using wet ethanol in combustion engines could lead to a reduction in the energy consumption during fuel processing. An understanding of fundamental combustion properties of ethanol in the presence of water vapor such as ignition behavior is expected to aid in the design of efficient engine combustion processes.
2010-10-25
Journal Article
2010-01-2098
Petter Tornehed, Ulf Olofsson
The drive to reduce particle emissions from heavy-duty diesel engines has reached the stage where the contribution from the lubricant can have a major impact on the total amount of particulate matter (PM). This paper proposes a model to predict the survival rate (unburnt oil divided by oil consumption) of the hydrocarbons from the lubricant consumed in the cylinder. The input data are oil consumption and cylinder temperature versus crank angle. The proposed model was tuned to correlate well with data from a six-cylinder heavy-duty diesel engine that meets the Euro 5 legislation without exhaust gas aftertreatment. The measured (and modelled) oil survival shows a strong correlation with engine power. The maximum oil survival rate measured (19%) was at motoring conditions at high speed. For this engine, loads above 100 kW yielded an oil survival rate of nearly zero.
2010-10-25
Technical Paper
2010-01-2092
Maya R. Desai, Monica Tutuianu, Mehrdad Ahmadinejad, Timothy C. Watling, Andrew P.E. York, Joseph W. Stevenson
The aftertreatment challenge in the non-road market is making the same system work and fit not just in one machine, but in hundreds of different machines, some of which can be used for many different purposes. This huge diversity of applications and the relatively small unit numbers for each application, coupled with the rapid introduction of new standards and the very high performance needed from the engines and machines, requires a sophisticated approach to product development. Furthermore, as emissions requirements become ever more stringent, designing a system to meet the legislation subject to packaging and cost constraints becomes progressively more difficult. This is further exacerbated by increasing system complexity, where more than one technology may be required to control all the legislated pollutants and/or an active control strategy is involved. Also a very high degree of component integration is required.
2010-10-25
Technical Paper
2010-01-2093
Byan Wahyu Riyandwita, Myung-Whan Bae
A three-dimensional model with the laminar flow of an incompressible viscous gas at a steady-state is developed to simulate a urea-SCR system by the SIMPLE algorithm. A porous medium coated by a metal-oxide-based catalyst is considered in this study. The flow field and chemical reactions inside the reactor are calculated simultaneously by a porous medium approach. In a urea-SCR modeling, the gas transport properties exist as parameters in each of the conservation equations. The evaluations of density, diffusion coefficients, viscosities, thermal conductivities and specific heats are required to select the most suitable gas transport properties in a numerical modeling of a multi-component gaseous mixture and chemically reacting flow.
2010-10-25
Technical Paper
2010-01-2089
M. P. Sturgess, S. F. Benjamin, C. A. Roberts
Modeling of SCR in diesel exhaust systems with injection of urea spray is complex and challenging but many models use only the conversion observed at the brick exit as a test of the model. In this study, the case modeled is simplified by injecting ammonia gas in nitrogen in place of urea, but the spatial conversion profiles along the SCR brick length at steady state are investigated. This is a more rigorous way of assessing the ability of the model to simulate observations made on a test exhaust system. The data have been collected by repeated engine tests on eight different brick lengths, all which were shorter than a standard-sized SCR. The tests have been carried out for supplied NH₃ /NOx ratios of a 1.5, excess ammonia, a 1.0, balanced ammonia, and a 0.5, deficient ammonia. Levels of NO, NO₂ and NH₃ have been measured both upstream and downstream of the SCR using a gas analyzer fitted with ammonia scrubbers to give reliable NOx measurements.
2010-10-05
Technical Paper
2010-01-2043
Satya Panigrahi
The ethanol industry is established mainly in the United States and Europe. In the US, over 95 percent of ethanol is corn-based. This ethanol production pathway has been criticized for having an unfavourable net energy balance and significant arable land and water requirements, as well as environmental impacts such as soil erosion, loss of biodiversity, and higher volatile organic compound and NOx pollution. The legislation to limit green house gas (GHG) emissions is a key driver of lignocellulosic ethanol which has been shown to reduce GHG emissions drastically (88%). The feed versus fuel debate is also driving lignocellulosic feedstocks such as agricultural and forestry residues (canola straw), herbaceous (alfalfa, switch grass) and woody crops. For this reason, major ethanol producers such as the US have identified agricultural and forestry residues, municipal solid wastes, herbaceous and woody crops as feedstocks for the production of transportation fuel.
2010-10-25
Technical Paper
2010-01-2127
Andrea Strzelec, Todd Toops, Charles Daw, David E. Foster, Christopher Rutland
Diesel particulate samples were collected from a light duty engine operated at a single speed-load point with a range of biodiesel and conventional fuel blends. The oxidation reactivity of the samples was characterized in a laboratory reactor, and BET surface area measurements were made at several points during oxidation of the fixed carbon component of both types of particulate. The fixed carbon component of biodiesel particulate has a significantly higher surface area for the initial stages of oxidation, but the surface areas for the two particulates become similar as fixed carbon oxidation proceeds beyond 40%. When fixed carbon oxidation rates are normalized to total surface area, it is possible to describe the oxidation rates of the fixed carbon portion of both types of particulates with a single set of Arrhenius parameters. The measured surface area evolution during particle oxidation was found to be inconsistent with shrinking sphere oxidation.
2010-10-25
Technical Paper
2010-01-2126
Alexander Sappok, Leslie Bromberg, James E. Parks, Vitaly Prikhodko
Accurate knowledge of diesel particulate filter (DPF) particulate matter (PM) loading is critical for robust and efficient operation of the combined engine-exhaust aftertreatment system. Furthermore, upcoming on-board diagnostics regulations require on-board technologies to evaluate the status of the DPF. This work describes the application of radio frequency (RF) - based sensing techniques to accurately measure DPF particulate matter levels. A 1.9L GM turbo diesel engine and a DPF with an RF-sensor were studied. Direct comparisons between the RF measurement and conventional pressure-based methods were made. Further analysis of the particulate matter loading rates was obtained with a mass-based total PM emission measurement instrument (TEOM) and DPF gravimetric measurements.
2010-10-25
Technical Paper
2010-01-2125
Xin He, John C. Ireland, Bradley T. Zigler, Matthew A. Ratcliff, Keith E. Knoll, Teresa L. Alleman, John T. Tester
In this work, the influences of ethanol and iso-butanol blended with gasoline on engine-out and post three-way catalyst (TWC) particle size distribution and number concentration were studied using a General Motors (GM) 2.0L turbocharged spark ignition direct injection (SIDI) engine. The engine was operated using the production engine control unit (ECU) with a dynamometer controlling the engine speed and the accelerator pedal position controlling the engine load. A TSI Fast Mobility Particle Sizer (FMPS) spectrometer was used to measure the particle size distribution in the range from 5.6 to 560 nm with a sampling rate of 1 Hz. U.S. federal certification gasoline (E0), two ethanol-blended fuels (E10 and E20), and 11.7% iso-butanol blended fuel (BU12) were tested. Measurements were conducted at 10 selected steady-state engine operation conditions. Bi-modal particle size distributions were observed for all operating conditions with peak values at particle sizes of 10 nm and 70 nm.
2010-10-25
Technical Paper
2010-01-2122
Stephen Samuel, Ahmed Hassaneen, Denise Morrey
This work aimed to study nano-scale particulate matter originating from gasoline direct injection engine during cold start and warm up operating conditions and to identify the role of the three-way catalytic converter on nano-scale particulate during cold-start and warm-up operating conditions. This work used a 4-stroke, 1.6 litre, wall guided gasoline direct injected, turbocharged and intercooled SI engine equipped with a three-way catalytic converter for this investigation. It used a fast particle spectrometer for the measurement of exhaust nano-scale particles upto 1000 nm diameter.
2010-10-05
Technical Paper
2010-01-2027
Satya Panigrahi
A new direction in biocomposite manufacturing is to integrate natural fibers and recycled polymers for manufacturing of some innovative products for various industrial uses including automotive under hood parts. The performance of these new materials are comparable to existing ones even with the replacement of synthetic fiber with biodegradable natural fiber from agricultural residue and with the shift from pure polymer to recycled polymer. Thermoplastic are reinforced with flax fiber mostly used to develop biocomppsite. Most of the research reviewed indicated that very limited work had been done on using flax fiber with recycled post consumer thermoplastic to make biocomposite. The goal of this research is to develop recycled biocomposite material by using flax fiber as a reinforcement and recycled post consumer thermoplastic as matrix and streamline the manufacturing process with optimal processing condition and fiber percentage.
2010-10-05
Technical Paper
2010-01-2025
Abhijeet Pingale, Deepak Vani
In traditional manufacturing processes a lot of material is wasted in hidden ways. These can be identified through Lean Manufacturing systems. It is proven that the Lean Approach eliminates waste and improves value. This reduces excessive investment in working capital and improves Return on Invested Capital (RoIC). As a result, the shareholder's value is maximized through simultaneously reducing costs and increasing capital efficiency. To demonstrate this we analyzed the production process of the Upper Output Shaft , a key component in a typical drive train assembly like a Four Wheel Drive transfer case, used in a pickup truck or SUV. Value Stream Mapping (VSM) is used to identify and reduce non value-added activities.
2010-10-05
Technical Paper
2010-01-2031
Robert Hupfer, Georg Habbel
The heavy-duty truck industry has adopted various methods and technologies to provide comfort in sleeper cabins during rest periods. For heating a sleeper cabin the fuel-operated heating technology has been used already industry wide, due to performance, ecological, and economical reasons. The same criteria apply to the comfort requirements in the summer or in warmer climate. One of the most common methods is still the idling of the main truck engine. While engine idling increases both fuel consumption and emissions, it is also having a negative effect on the engine and exhaust system maintenance, especially with the latest changes of the emission regulation and the application of active and passive Diesel Particulate Filter (DPF) regeneration strategies.
2010-10-05
Technical Paper
2010-01-2028
Satya Panigrahi
This article summarizes an experimental study on the mechanical and thermal properties of high density polyethylene (HDPE) compression molding jute biocomposites. Various type of chemical treatment such as NaOH, silane treatment etc are performed to improve the adhesion between the fibers and the HDPE matrix. Variations in fiber percentage, fiber size are maintained as a function of mechanical properties and thermal properties are studied. Mechanical strength of composite shows that composites with silane and NaOH treated exhibit more mechanical strength than untreated composites. Mechanical properties are assessed by tensile, flexural and hardness test and thermal properties are assessed by melting temperature. From the result obtained, thermal characteristics of the composites can be conclude that composites made with NaOH and silane treatment of fiber exhibit more melting temperature compare to untreated one but not significantly.
Viewing 1 to 30 of 22068

Filter

  • Range:
    to:
  • Year: