Criteria

Text:
Display:

Results

Viewing 1 to 30 of 1790
2013-04-08
Technical Paper
2013-01-0887
Kohtaro Hashimoto, Mitsuo Koshi, Akira Miyoshi, Yoshinori Murakami, Tatsuo Oguchi, Yasuyuki Sakai, Hiromitsu Ando, Kentaro Tsuchiya
Gasoline includes various kinds of chemical species. Thus, the reaction model of gasoline components that includes the low-temperature oxidation and ignition reaction is necessary to investigate the method to control the combustion process of the gasoline engine. In this study, a gasoline combustion reaction model including n-paraffin, iso-paraffin, olefin, naphthene, alcohol, ether, and aromatic compound was developed. KUCRS (Knowledge-basing Utilities for Complex Reaction Systems) [1] was modified to produce paraffin, olefin, naphthene, alcohol automatically. Also, the toluene reactions of gasoline surrogate model developed by Sakai et al. [2] including toluene, PRF (Primary Reference Fuel), ethanol, and ETBE (Ethyl-tert-butyl-ether) were modified. The universal rule of the reaction mechanisms and rate constants were clarified by using quantum chemical calculation.
2013-04-08
Journal Article
2013-01-1303
Manabu Hasegawa, Toru Nishizawa, Yoshihiro Imaoka, Keiji Kawamoto, Atsushi Teraji, Shuichi Iio
For diesel engine, lower compression ratio has been demanded to improve fuel consumption, exhaust emission and maximum power recently. However, low compression ratio engine might have combustion instability issues under cold temperature condition, especially just after engine started. As a first step of this study, cold temperature combustion was investigated by in-cylinder pressure analysis and it found out that higher heat release around top dead center, which was mainly contributed by pilot injection, was the key factor to improve engine speed fluctuation. For further understanding of combustion in cold condition, particularly mixture formation near a glow plug, 3D CFD simulation was applied. Specifically for this purpose, TI (Time-scale Interaction) combustion model has been developed for simulating combustion phenomena. This model was based on a reasonable combustion mode, taking into account the characteristic time scale of chemical reactions and turbulence eddy break-up.
2013-04-08
Journal Article
2013-01-1304
Piotr Bielaczyc, Joseph Woodburn, Andrzej Szczotka
Diesel (compression ignition, CI) engines are increasingly exploited in light-duty vehicles, due to their high efficiency and favorable characteristics. Limited work has been performed on CI cold-start emissions at low temperatures. This paper presents a discussion and a brief literature review of diesel cold-start emissions phenomena at low ambient temperatures and the results of tests performed on two European light-duty vehicles with Euro 5 CI engines. The tests were performed on a chassis dynamometer within an advanced climate-controlled test laboratory at BOSMAL Automotive Research and Development Institute, Poland to determine the deterioration in emission of gaseous (HC, CO, NOx, CO2) and solid (PM, PN) pollutants following the EU legislative test procedure (testing at 20°C to 30°C and at -7°C, performed over the NEDC). The tests revealed appreciable increases in emissions of regulated pollutants.
2013-04-08
Journal Article
2013-01-1309
Petros Efthymiou, Martin H. Davy, Colin P. Garner, Graham K. Hargrave, John E.T. Rimmer, Dave Richardson
Particulate Matter (PM) emissions reduction is an imminent challenge for Direct Injection Spark Ignition (DISI) engine designers due to the introduction of Particulate Number (PN) standards in the proposed Euro 6 emissions legislation aimed at delivering the next phase of air quality improvements. An understanding of how the formation of combustion-derived nanoparticulates in engines is affected by the engine operating temperature is important for air quality improvement and will influence future engine design and control strategies. This investigation has examined the effect on combustion and PM formation when reducing the engine operating temperature to -7°C. A DISI single-cylinder optical research engine was modified to simulate a range of operating temperatures down to the proposed -7°C.
2013-04-08
Journal Article
2013-01-1341
Lei Zhou, Yifu Liu, Lu Sun, Haixiao Hou, Ke Zeng, Zuohua Huang
Natural gas has become an attractive alternative for diesel fuel due to its higher octane number, richer reserves and lower price. It has been utilized in compression ignition engines to obtain a higher thermal efficiency compared with spark ignition engines. However, its relatively higher auto-ignition temperature increases the difficulty of compression-ignition based on present hardware devices. One optimal ignition method is that a very small quantity of diesel fuel as the only ignition resource pilot-ignites the lean natural gas-air mixture. This micro diesel pilot-ignited natural gas premixed charge compression ignition (DPING-PCCI) combustion strategy is easy to implement without major hardware modifications, and can significantly reduce the NOx and particle mass emissions from diesel engines. Although the DPING-PCCI has so many advantages, it suffers from poor engine stability and high ultrafine particles emissions at part loads.
2013-09-24
Technical Paper
2013-01-2423
Rishikesh Venugopal, Neerav Abani, Ryan MacKenzie
This paper presents analytical and measured results on the effects of injection pattern design on piston thermal management in an Opposed-Piston, Two-Stroke (OP2S) diesel engine. The OP2S architecture investigated in this work comprises two opposing pistons forming an asymmetric combustion chamber with two opposing injectors mounted on the cylinder wall. This unique configuration offers opportunities to tailor the injection pattern to control the combustion heat flux and resulting temperatures on the piston surfaces while optimizing combustion simultaneously. This study utilizes three-dimensional (3D) computational fluid dynamics (CFD) with state-of-the-art spray, turbulence and combustion models that include detailed chemistry to simulate the in-cylinder combustion and the associated flame/wall interactions. In addition, the measurements comprise a real-time thermocouple system, which allows for up to 14 locations to be monitored and recorded on the intake and exhaust pistons.
2013-09-24
Journal Article
2013-01-2422
Yu Zhang, Ilya Sagalovich, William De Ojeda, Andrew Ickes, Thomas Wallner, David D. Wickman
Low temperature combustion through in-cylinder blending of fuels with different reactivity offers the potential to improve engine efficiency while yielding low engine-out NOx and soot emissions. A Navistar MaxxForce 13 heavy-duty compression ignition engine was modified to run with two separate fuel systems, aiming to utilize fuel reactivity to demonstrate a technical path towards high engine efficiency. The dual-fuel engine has a geometric compression ratio of 14 and uses sequential, multi-port-injection of a low reactivity fuel in combination with in-cylinder direct injection of diesel. Through control of in-cylinder charge reactivity and reactivity stratification, the engine combustion process can be tailored towards high efficiency and low engine-out emissions. Engine testing was conducted at 1200 rpm over a load sweep.
2013-09-08
Technical Paper
2013-24-0147
Giancarlo Chiatti, Ornella Chiavola, Erasmo Recco
To ensure compliance with emerging Diesel emission standards and demands for reduced fuel consumption, the optimization of the engine operation is imperative under both stationary and real operation conditions. This issue imposes a strict control of the combustion process that requires a closed-loop algorithm able to provide an optimal response of the engine system not only to warm-up, accelerations, changes in the slope of the road, etc., but also to engine aging and variations of fuel properties. In this paper, with the final purpose of accomplishing an innovative control strategy based on non intrusive measurement, the engine block vibration signal is used to extract useful information able to characterize the in-cylinder pressure development during the combustion process. In the previous research activity, the same methodology was applied to stationary operation of the engine.
2013-09-08
Journal Article
2013-24-0016
Daniele Farrace, Michele Bolla, Yuri M. Wright, Konstantinos Boulouchos
Numerical simulations of in-cylinder soot evolution in the optically accessible heavy-duty diesel engine of Sandia National Laboratories have been performed with the multidimensional conditional moment closure (CMC) model using a reduced n-heptane chemical mechanism coupled with a two-equation soot model. Simulation results are compared to the high-fidelity experimental data by means of pressure traces, apparent heat release rate (AHRR) and time-resolved in-cylinder soot mass derived from optical soot luminosity and multiple wavelength pyrometry in conjunction with high speed soot cloud imaging. In addition, spatial distributions of soot relevant quantities are given for several operating conditions.
2013-09-08
Technical Paper
2013-24-0013
Alberto Vassallo, Venkatesh Gopalakrishnan, Stefano Arrigoni, Roberto Cavallo, Riccardo Turcato, Alberto Racca
It is traditionally accepted within the Diesel engine engineering community that Bore-to-stroke (B/S) ratios in the range ∼0.85 to ∼0.95 provide the best thermodynamic optimization for light-duty engines, mostly due to the favorable surface-to-volume ratio in the central phase of combustion, which reduces heat rejection, and to the torque-oriented volumetric efficiency profile. As a consequence, most engines into production exhibit B/S in that range, with few B/S ∼1.00 exceptions mainly for packaging issues on some V engines, and, very interestingly, on the last-generation of small and mid-sized engines. The analysis of the technical reasons behind this recent trend is performed in the present paper, by employing a 1D-CFD approach based on Design Of Experiment (DOE) methodology. A one-dimensional analysis was carried out using a detailed GT-Power model for a 1.6 liter light-duty Mid-sized Diesel Engine (MDE), characterized by best-in-class torque and power rating in its class.
2013-09-08
Technical Paper
2013-24-0014
Gianluca D'Errico, Tommaso Lucchini, Alessandro Stagni, Alessio Frassoldati, Tiziano Faravelli, Eliseo Ranzi
Detailed chemistry represents a fundamental pre-requisite for a realistic simulation of combustion process in Diesel engines to properly reproduce ignition delay and flame structure (lift-off and soot precursors) in a wide range of operating conditions. In this work, the authors developed reduced mechanisms for n-dodecane starting from the comprehensive kinetic mechanism developed at Politecnico di Milano, well validated and tested in a wide range of operating conditions [1]. An algorithm combining Sensitivity and Flux Analysis was employed for the present skeletal reduction. The size of the mechanisms can be limited to less than 100 species and incorporates the most important details of low-temperature kinetics for a proper prediction of the ignition delay. Furthermore, the high-temperature chemistry is also properly described both in terms of reactivity and species formation, including unsaturated compounds such as acetylene, whose concentration controls soot formation.
2013-09-08
Journal Article
2013-24-0021
Mattia Bissoli, Alberto Cuoci, Alessio Frassoldati, Tiziano Faravelli, Eliseo Ranzi, Tommaso Lucchini, Gianluca D'Errico, Francesco Contino
A new multi-zone model for the simulation of HCCI engine is here presented. The model includes laminar and turbulent diffusion and conduction exchange between the zones and the last improvements on the numerical aspects. Furthermore, a new strategy for the zone discretization is presented, which allows a better description of the near-wall zones. The aim of the work is to provide a fast and reliable model for carrying out chemical analysis with detailed kinetic schemes. A preliminary sensitivity analysis allows to verify that 10 zones are a convenient number for a good compromise between the computational effort and the description accuracy. The multi-zone predictions are then compared with the CFD ones to find the effective turbulence parameters, with the aim to describe the near-wall phenomena, both in a reactive and non-reactive cases.
2013-09-08
Technical Paper
2013-24-0020
Enrico Mattarelli, Stefano Fontanesi, Carlo Rinaldini, Gerardo Valentino, Stefano Iannuzzi, Elena Severi, Valeri Golovitchev
Enhanced calibration strategies and innovative engine combustion technologies are required to meet the new limits on exhaust gas emissions enforced in the field of marine propulsion and on-board energy production. The goal of the paper is to optimize the control parameters of a 4.2 dm3 unit displacement marine DI Diesel engine, in order to enhance the efficiency of the combustion system and reduce engine out emissions. The investigation is carried out by means of experimental tests and CFD simulations. For a better control of the testing conditions, the experimental activity is performed on a single cylinder prototype, while the engine test bench is specifically designed to simulate different levels of boosting. The numerical investigations are carried out using a set of different CFD tools: GT-Power for the engine cycle analysis, STAR-CD for the study of the in-cylinder flow, and a customized version of the KIVA-3V code for combustion.
2013-09-08
Technical Paper
2013-24-0186
Saud Binjuwair, Salah Ibrahim
This paper deals with the numerical investigation of the in-cylinder flow structures under steady-state conditions utilizing the finite-volume CFD package, STAR CCM+. Two turbulence models were used to simulate the turbulent flow structure namely, Realizable k-ε and Reynolds Stress Turbulence Model, RSTM. Three mesh densities of polyhedral type are examined. The three-dimensional numerical investigation has been conducted on an engine head of a pent-roof type (Lotus) for a number of fixed valve lifts (2mm, 5mm, 8mm) at two pressure drops 2451.662 Pa and 6227.222 Pa that is equivalent to engine speeds of 2500 and 4000 RPM respectively. This correlation between pressure drop and engine speed is provided by Lotus engineering according to real engine studies. Based on the comparison between two turbulence models, the turbulent flow structure was simulated using RSTM model for a number of tumble and swirl planes.
2013-01-09
Technical Paper
2013-26-0003
Santhosh Thomas, R. Navaneetha Kannan, Agam Saroop, Shailender Sharma
In view of rising oil prices and concern for the greenhouse gas emissions, the need for greener and efficient engines is increasing. Thus, automobile manufacturers are trying to improve the performance and efficiency of the engine while keeping compliance with the stringent emission norms. CNG, with its high H/C ratio, makes it a clean fuel by significantly reducing the emission of green-house gas carbon-dioxide. CNG, being cheap compared to other conventional fuels, is an added advantage and hence is gaining popularity. Along with improvement in the part load and full load efficiency, Engine manufactures are looking to lower the idle speed for better fuel economy. Lowering the idle speed has to be optimized as, it reduces the combustion stability of the engine which in turn increases the variation of Indicated Mean Effective Pressure (IMEP) resulting in high structural vibration from the engine and to vehicle body.
2013-01-09
Technical Paper
2013-26-0045
C. N. Pratheeba, Preeti Aghalayam, Sudheer Kumar Boppana, Kannan Moudgalya
Engine modelling aims at studying the combustion related phenomenon occurring in Internal Combustion (IC) engines. In this regard, a low dimensional mathematical model using first principles has been developed to study Spark Ignited (SI) engines. The resulting equations are Ordinary Differential Equations (ODE) (for volume, pressure, torque, speed and work done) and Partial Differential Equations (PDEs) for temperature and species conservation equations (fuel, CO, CO2, NO). This model utilizes simplified reaction kinetics for the oxidation of fuel in the combustion chamber. A two-step mechanism for the combustion of fuel and the classical Zeldovich Mechanism are used to predict the amount of NO formed during combustion. The model is solved in FORTRAN using LSODE subroutine (for stiff equations) with lumped parameters for thermal properties and diffusion, and invoking the ideal gas assumption.
2013-01-09
Technical Paper
2013-26-0040
H. Viswanathan, A. Awasthi, C. Ageorges, M. Bohl
A valve used in automotive applications for purging fuel vapors accumulated in canister to deliver into the engine intake is investigated. Computational Fluid Dynamics (CFD) methods are employed for predicting the maximum mass flow rate through the valve due to pressure drop across the upstream and downstream of the valve. The CFD analyses show good correlation with the experimentally determined pressure drop and the mass flow rate values across the purge valve. More specifically, the chocking behavior of the purge valve predicted through CFD accurately matches the experimental result. Finally, the CFD predicts the appearance of shock wave patterns when back pressure values at the purge valve system exit are varied. The predicted shock wave patterns can be detrimental under normal operating conditions of a fuel system.
2013-01-09
Technical Paper
2013-26-0115
F. Murr, E. Winklhofer, H. Friedl
Traditional power train development work is concentrated mainly on test bed and on chassis dyno. Though we can simulate a lot of real world conditions on testbed and chassis dyno today, on road application work willis gaining more attention. This means that strategies and tools for invehicle testing under real world conditions are becoming more important. Emission, performance, fuel economy, combustion noise and driving comfort are linked to combustion quality, i.e. quality of fuel mixture preparation and flame propagation. The known testing and research equipment is only partly or not at all applicable for in-vehicle development work. New tools for on the road testing are required. Following, a general view on in-vehicle power train testing will be given. Additionally, new ways to investigate cylinder and cycle specific soot formation in GDI engines with fiber optic tools will be presented.
2013-01-09
Technical Paper
2013-26-0127
Jyotirmoy Barman, Sumit Arora, Akhilesh Shukla, Rizwan Khan, Ashish Moholkar
The demand for reduced pollutant emissions has motivated various technological advances in commercial diesel engines. The challenge for the direct injection diesel engines today is to reduce harmful emissions of diesel engines, such as Particulate Matter (PM) and Nitrogen oxides (NOx), and enhance the fuel efficiency and power. To meet this challenge, more accurate control of injection parameters such as the injection timing, injection rate, and injection quantity is required. A comprehensive study is carried out in order to better understand combustion behavior in a direct injection diesel engine working under different injection strategies particularly with post and pre-injections and number of injection. The objective of the study described in this paper is to explore the potential of multiple injection patterns with a common rail system in light duty diesel engines.
2013-01-09
Technical Paper
2013-26-0121
Kunjan Sanadhya, B. S. Deshmukh, D. P. Godse, S. Moharir, Y. V. Aghav
The research work focus on the occurrence of incylinder peak pressure variation and fuel spray characteristics on piston seizure. The study has been carried out for direct injection diesel engine of heavy duty off-highway application. The well optimized and normal combustion results into the peak cylinder pressure variation within 3.5 bar to 4 bar, whereas the abnormal combustion signposts the peak cylinder pressure almost double of normal combustion. The research work has been carried out to study the effect of different peak cylinder pressure variation and its effect on the start of piston seizure. The three different range of peak cylinder pressure variation have been selected for the study. The selected range of peak cylinder pressure depicts normal to abnormal combustion characteristics. The effect on piston motion dynamics and start of piston seizure has been carried out successfully.
2013-01-09
Technical Paper
2013-26-0126
Ashish Moholkar, Rizwan Khan, Jyotirmoy Barman, Sumit Arora
Increased options and flexibility in common rail direct injection provides a great opportunity for combustion optimization using fuel and air system with proper combustion chamber configuration. This paper elaborates the experimental work conducted for combustion optimization with combinations of piston bowl, intake port swirl, injector specifications and turbo charging on a 3.8 l four valve diesel engine of LDT application equipped with common rail fuel injection system and waste gate turbo charge. In meeting the target emission norms with internal engine measures, the design of the piston bowl and the nozzle configuration perform a defining role. Through simulations the best option had been carried out parametrically investigate the influence of piston bowl geometry and nozzle characteristics on the performance of the combustion system.
2013-01-09
Technical Paper
2013-26-0133
Arvind R, Jayagopal S, Suryanarayanan V, Porpatham E, Senthil Kumar A
Brazil has implemented a new emission regulation for Light commercial vehicles named PROCONVE L6. This regulation follows Environmental Protection Act (EPA) driving cycle; FTP75. This cycle simulates an urban route of 12.07 km with frequent stops. The maximum speed is 91.2 km/h and the average speed is 31.5 km/h. The regulation has proposed that the gear shift pattern of the manual transmission vehicle can be varied according to the manufacturer's specification. This has lead to the strategy of optimizing gear shift pattern without compromising diesel combustion and engine-out emission with optimized exhaust-gas treatment-devices. The emission is demonstrated to Brazilan Authorities with good margins.
2013-01-09
Technical Paper
2013-26-0131
N. H. Walke, N. V. Marathe, M. R. Nandgaonkar
This paper is focused on the prediction of in-cylinder pressure, temperatures and engine-out NOx. One of the important factors influencing engine output parameters is the rate of heat release, which affects the in-cylinder pressure, temperature and engine out emissions. A single-zone model is formulated for prediction of heat release and in-cylinder pressure. Being a predictive model, this model does not required cylinder pressure as an input. Combustion pressure is predicted by modeling compression pressure, ignition delay, heat release, and heat loss. Required Sub-models have been obtained from the literatures. Fuel burning rate is predicted using Watson model. To retain the computational efficiency and better prediction accuracy a two-zone model has been formulated to predict NOx emissions. Flame temperatures are predicted by enthalpy balance. Thermal NO concentration is predicted by using basic Zeldovich mechanism.
2013-10-15
Technical Paper
2013-32-9002
Hui-Ting Chang, Chih-Wei Huang, Kuan-Hsu Lin, Wen-Cheng Hu
It is well know that better fuel economy, good drivability, lower cost are essential for motorcycle market in Asia. To meet these demands in the meantime is a challenge for engineers. Gas motion in cylinder has significant effects on engine combustion efficiency and stability. A simple gas motion control valve may be a solution to meet these demands. This paper examines the turbulence characteristics combustion and fuel consumption between swirl valve and tumble valve on an air cooled 150cc four valves scooter engine. Finally, the swirl valve and tumble valve respectively improve the fuel consumption about 12% and 17% in the partial load 4500rpm, 2bar BMEP engine operating condition.
2013-10-15
Technical Paper
2013-32-9030
Takashi Ishino, Norikuni Hayakawa, Tomomi Miyasaka, Akira Iijima, Koji Yoshida, Hideo Shoji
Engine downsizing with a turbocharger / supercharger has attracted attention as a way of improving the fuel economy of automotive gasoline engines, but this approach can be frustrated by the occurrence of abnormal combustion. In this study, the factors causing abnormal combustion were investigated using a supercharged, downsized engine that was built by adding a mechanical supercharger. Combustion experiments were conducted in which the fuel octane number and supercharging pressure were varied while keeping the engine speed, equivalence ratio and intake air temperature constant. In the experiments, a visualization technique was applied to photograph combustion in the combustion chamber, absorption spectroscopy was used to investigate the intermediate products of combustion, and the cylinder pressure was measured. The experimental data obtained simultaneously were then analyzed to examine the effects on combustion.
2013-10-15
Journal Article
2013-32-9022
Hideyuki Ogawa, Gen Shibata, Takaki Kato, Hari Setiapraja, Kosuke Hara
Water and diesel fuel emulsions containing 13% and 26% water by volume were investigated in a modern diesel engine with relatively early pilot injection, supercharging, and cooled EGR. The heat release from the pilot injection with water emulsions is retarded toward the top dead center due to the poor ignitability, which enables larger pilot and smaller main injection quantities. This characteristic results in improvements in the thermal efficiency due to the larger heat release near the top dead center and the smaller afterburning. With the 26% water emulsion, mild, smokeless, and very low NOx operation is possible at an optimum pilot injection quantity and 15% intake oxygen with EGR at or below 0.9 MPa IMEP, a condition where large smoke emissions are unavoidable with regular unblended diesel fuel. Heat transfer analysis with Woschni's equation did not show the decrease in cooling loss with the water emulsion fuels.
2013-10-15
Technical Paper
2013-32-9036
Joseph K. Ausserer, Paul J. Litke, Jon-Russell Groenewegen, Alexander Rowton, Marc Polanka, Keith Grinstead
Small internal combustion engines (ICEs), (<7.5 kW), possess low thermal efficiencies due to high thermal losses. As the surface area to volume ratio increases beyond 1.5 cm2/cc, the increase in thermal losses leads to a drop off of engine efficiency and power. This effort describes the development and validation of a test stand to characterize thermal losses of small ICEs, optimize combustion phasing, and eventually enable heavy fuel operation. The test stand measures torque, rotational speed, brake power, intake air mass flow, up to 48 temperatures (including ambient, intake, cylinder head, fuel, and exhaust), 8 pressures (including ambient, intake, and exhaust), throttle position, and fuel and air mass flows. Intake air temperature and cylinder head temperature are controlled and adjustable. Three geometrically similar engines with surface area to volume ratios near 1.5 cm2/cc were selected from 3W Modellmotoren.
2013-10-07
Technical Paper
2013-36-0313
Fernando Z. Sánchez, Carlos V. M. Braga, Leonardo C. Braga, Sergio L. Braga, Flávio G. Dias, Franck Y. Turkovics, Renata N. C. De Souza
Nowadays, many researches are being carried out to replace the diesel by alternative fuels. Biodiesel and ethanol are strong candidates for this purpose. However, the experimental study of the combustion of biofuels in engines is not an easy task. Due to the large differences between the properties of the new fuels and the conventional diesel, radical changes may be needed in current engines, developed specifically for the fossil fuel. So, the experimental study of ethanol compression ignition (CI) combustion is not simple to be obtained in conventional engines. Therefore, some experimental apparatus, such as a rapid compression machine (RCM), are useful to conduct this kind of study. This paper describes the RCM adaptations made in order to run CI combustion tests using Ethanol-Powered (ED95) and Diesel (S50) for different compression ratios and injection timing.
2013-10-15
Technical Paper
2013-32-9065
Yameogo Amadou, Chang-Tai Wu, Yu-Cheng Jiang, Jau-Huai Lu
Use of catalyst in engines has entailed a radical increase in the importance of misfire detection. When a misfire occurs, hydrocarbon emissions will increase and the unburned fuel can damage the catalyst by overheating. On-Board Diagnostics II (OBDII) regulations are still not applied to motorcycle or moped yet. However its application is under discussion in European Union. In Taiwan, OBD is scheduled to be implemented soon. Many strategies of misfire detection have been developed, including variation in engine shaft angular speed, spark plug voltage, cylinder pressure, oxygen sensor signal, knowledge based expert system, and neural networks. WE propose a new method to use the real time signals of a wide band oxygen sensor to detect misfire where, misfire was induced on purpose with a misfire generator. The sensor and the misfire trigger signals were recorded simultaneously.
2013-10-15
Technical Paper
2013-32-9080
Eiji Kinoshita, Kazuyo Fushimi, Yasufumi Yoshimoto
This paper describes the fuel properties, combustion characteristics and exhaust emissions of the methyl esters of saturated fatty acid with 6 to 10 carbons in the molecule chain. The fuels blend (50/50 mass%) of three saturated fatty acid methyl esters (methyl caproate, methyl caprylate, methyl caprate); with methyl laurate as a base fuel are tested using a DI diesel engine. From the experimental results, the blend of saturated fatty acid methyl ester with a lower carbon number has a lower kinematic viscosity, pour point and smoke emission, though having longer ignition delay, the same as long chain saturated fatty acid methyl ester.
Viewing 1 to 30 of 1790

Filter

  • Range:
    to:
  • Year: