Criteria

Text:
Content:
Display:

Results

Viewing 1 to 30 of 116
CURRENT
1996-05-01
Standard
AIR1934A
The purpose of this document is to relate areas where carbon brake technology may differ from traditional steel brake technology in design and performance. Carbon brakes have been used on military aircraft for many years and are now frequently used on newly commercial developed aircraft. This document presents some of the lessons learned.
HISTORICAL
1985-10-01
Standard
AIR1934
CURRENT
2012-07-19
Standard
AIR4012C
This SAE Aerospace Information Report (AIR) documents general technical data associated with many of the wheels used in the Air Force.
HISTORICAL
1995-11-01
Standard
AIR4012A
This SAE Aerospace Information Report (AIR) is intended to provide general background on aircraft wheel service lives on military aircraft and wheel laboratory test requirements as specified by military procurement agencies or aircraft manufacturers. Wheel service life in this document refers to the lowest life wheel half or flange in a wheel assembly measured in years (excluding bearing, bolt, and other removals). This information is intended as a reference guide for those responsible for specifying original equipment (OE) wheel laboratory test requirements.
HISTORICAL
2006-02-09
Standard
AIR4012B
This SAE Aerospace Information Report (AIR) documents general technical data associated with many of the wheels used in the Air Force.
HISTORICAL
1999-06-01
Standard
AIR1739A
This SAE Aerospace Information Report (AIR) has been prepared by a panel of the SAE A-5A Committee and is presented to document the design approaches and service experience from various applications of antiskid systems. This experience includes commercial and military applications.
HISTORICAL
1988-01-01
Standard
AIR1739
This Aerospace Information Report (AIR) has been prepared by a panel of the SAE A-5 Committee and is presented to document the design approaches and service experience from various applications of antiskid systems. This experience includes commercial and military applications.
CURRENT
2012-02-15
Standard
AIR1739B
This SAE Aerospace Information Report (AIR) has been prepared by a panel of the SAE A-5A Committee and is presented to document the design approaches and service experience from various applications of antiskid systems. This experience includes commercial and military applications.
CURRENT
2007-03-05
Standard
AIR5937
This SAE Aerospace Information Report (AIR) describes the design, operation, and attributes of electrical braking systems for both military and commercial aircraft. At this time, the document focuses only on brakes utilizing electromechanical actuators (EMAs), as that is the present state of the art. As such, the discussions herein assume that EMAs can simply replace the hydraulic actuation portion of typical brake system leaving things such as the wheel and heat sink unchanged. Furthermore, the document provides detail information from the perspective of brake system design and operation. The document also addresses failure modes, certification issues, and past development efforts. Details on the design and control of electric motors, gear train design, ball or roller screw selection are available in the reference documents and elsewhere, but are outside the scope of this document.
CURRENT
2001-06-01
Standard
AIR5388
This SAE Aerospace Information Report (AIR) has been prepared by a panel of the SAE A-5A Committee and is presented to document unique design approaches used for aircraft wheels and brakes.
CURRENT
2014-07-29
Standard
AIR5372A
This SAE Aerospace Information Report (AIR) describes the design approaches used for current applications of aircraft Brake-by-Wire (BBW) control systems. The document also discusses the experience gained during service, and covers system, ergonomic, hardware, and development aspects. The document includes the lessons that have been learned during application of the technology. Although there are a variety of approaches that have been used in the design of BBW systems, the main focus of this document is on the current state of the art systems.
HISTORICAL
2003-03-12
Standard
AIR5372
A panel of the SAE A-5A Committee prepared this SAE Aerospace Information Report (AIR). The document describes the design approaches used for current applications of Brake-by-Wire (BBW) control systems that are used on commercial and military airplanes. The document also discusses the experience gained during service in the commercial and military environments, and covers system, ergonomic, hardware, and development aspects. The treatment includes the lessons that have been learned during application of the technology. Although there are a variety of approaches that have been used in the design of BBW systems, the main focus of this document is on systems that use the electro-hydraulic method of control. The overall range of implementations is briefly described in 2.3. Sections 3, 4, and 5 describe the electro-hydraulic method in detail.
CURRENT
2016-04-12
Standard
AIR5490A
This document provides information on contamination and its effects on brakes having carbon-carbon composite friction materials (carbon). Carbon is hygroscopic and porous, and therefore readily absorbs liquids and contaminants. Some of the contaminants can impact intended performance of the brake. This document is intended to raise awareness of the effects of carbon brake contamination and provide information on industry practices for its prevention. Although not addressed in this report, contaminants can cause problems with other landing system components including tires.
HISTORICAL
2002-12-19
Standard
AIR5490
This document provides information on contamination and its effects on brakes having carbon-carbon composite friction materials (carbon). Carbon is hygroscopic and porous, and therefore readily absorbs liquids and contaminants. Some of the contaminants can impact intended performance of the brake. This document is intended to raise awareness of the effects of carbon brake contamination and provide recommendations for its prevention. Although not addressed in this report, contaminants can cause problems with other landing system components including tires.
HISTORICAL
1992-01-01
Standard
AIR4012
This SAE Aerospace Information Report (AIR) documents general technical data associated with many of the wheels used in the Air Force.
2017-01-31
WIP Standard
AIR6417
This Aerospace Information Report (AIR) provides information related to experience with carbon brake quality-assurance rejected takeoff tests, and considerations regarding test setup, test conditions, test frequency and cost considerations.
2017-05-03
WIP Standard
AIR6952
The pupose of this SAE AIR is to provide guidelines for sizing stored energy systems in use in emergency braking systems, in light of their intended purpose and applicable certification regulations.
HISTORICAL
1963-11-01
Standard
AIR764
This technical report documents three surveys to determine realistic vibration requirements for skid control systems specifications and obtain updated vibration information for locations in aircraft where skid control system components are mounted.
HISTORICAL
1966-06-20
Standard
AIR764A
This technical report documents three surveys to determine realistic vibration requirements for skid control systems specifications and obtain updated vibration information for locations in aircraft where skid control system components are mounted.
HISTORICAL
1979-02-15
Standard
AIR764B
HISTORICAL
1997-03-01
Standard
AIR764C
This technical report documents three surveys to determine realistic vibration requirements for skid control systems specifications and obtain updated vibration information for locations in aircraft where skid control system components are mounted.
CURRENT
2012-09-05
Standard
AIR764D
This technical report documents three surveys to determine realistic vibration requirements for skid control systems specifications and obtain updated vibration information for locations in aircraft where skid control system components are mounted.
HISTORICAL
1992-09-08
Standard
AIR4403
This SAE Aerospace Information Report (AIR) describes available technology and current aerospace industry practices used for the selection, testing, lubrication, and sealing of single row tapered roller bearings to reduce bearing damage as a problem in the aircraft industry.
HISTORICAL
2009-05-13
Standard
AIR5567
The scope of the test method is to provide stakeholders including fluid manufacturers, brake manufacturers, aircraft constructors, aircraft operators and airworthiness authorities with a relative assessment of the effect of deicing chemicals on carbon oxidation. This simple test is only designed to assess the relative effects of runway deicing chemicals by measuring mass change of contaminated and bare carbon samples tested under the same conditions. It is not possible to set a general acceptance threshold oxidation limit based on this test method because carbon brake stack oxidation is a function of heat sink design and the operating envirnoment.
CURRENT
2010-06-24
Standard
AIR5567A
The scope of the test method is to provide stakeholders including fluid manufacturers, airport operators, brake manufacturers, aircraft constructors, aircraft operators and airworthiness authorities with a relative assessment of the effect of deicing chemicals on carbon oxidation. This simple test is only designed to assess the relative effects of runway deicing chemicals by measuring mass change of contaminated and bare carbon samples tested under the same conditions. It is not possible to set a general acceptance threshold oxidation limit based on this test method because carbon brake stack oxidation is a function of heat sink design and the operating environment.
2013-03-11
WIP Standard
AIR5567B
The scope of the test method is to provide stakeholders including fluid manufacturers, brake manufacturers, aircraft constructors, aircraft operators and airworthiness authorities with a relative assessment of the effect of deicing chemicals on carbon oxidation. This simple test is only designed to assess the relative effects of runway deicing chemicals by measuring mass change of contaminated and bare carbon samples tested under the same conditions. It is not possible to set a general acceptance threshold oxidation limit based on this test method because carbon brake stack oxidation is a function of heat sink design and the operating envirnoment.
HISTORICAL
1997-01-01
Standard
AIR1064C
The landing gear is a complex multi-degree of freedom dynamic system and may encounter vibration problems induced by braking action. The vibratory modes can be induced by several frictional characteristics and brake design features. These should be assessed during the design concept and verified during the development of the hardware. This SAE Aerospace Information Report (AIR) has been prepared by a panel of the A-5A Subcommittee to present an overview of the landing gear system problems associated with aircraft brake dynamics and the approaches to the solution of these problems. In addition, facilities available for test and evaluation are presented and discussed.1
HISTORICAL
1988-11-21
Standard
AIR1064B
HISTORICAL
1979-07-01
Standard
AIR1064A
This SAE Aerospace Information Report (AIR) has been prepared by a panel of the A-5A Subcommittee to present an overview of the landing gear problems associated with aircraft braking system dynamics, and the approaches to the identification, diagnosis, and solution of these problems. All pertinent system modes of vibration are described. In addition, facilities and techniques available for test and evaluation are presented and discussed, and useful references are cited. The terminology used is intended to be consistent with AIR1489, "Aerospace Landing Gear Systems Terminology", but some terminology herein is not yet included in AIR1489. The panel members include representatives from major brake, landing gear, aircraft, and brake control system manufacturers. In addition, drafts of the document were circulated for input beyond the SAE to other experts in the field.
HISTORICAL
1968-12-01
Standard
AIR1064
This SAE Aerospace Information Report (AIR) has been prepared by a panel of the A-5A Subcommittee to present an overview of the landing gear problems associated with aircraft braking system dynamics, and the approaches to the identification, diagnosis, and solution of these problems. All pertinent system modes of vibration are described. In addition, facilities and techniques available for test and evaluation are presented and discussed, and useful references are cited. The terminology used is intended to be consistent with AIR1489, "Aerospace Landing Gear Systems Terminology", but some terminology herein is not yet included in AIR1489. The panel members include representatives from major brake, landing gear, aircraft, and brake control system manufacturers. In addition, drafts of the document were circulated for input beyond the SAE to other experts in the field.
Viewing 1 to 30 of 116