Criteria

Text:
Content:
Display:

Results

Viewing 1 to 30 of 135
2015-11-19
WIP Standard
AIR6079A
The purpose of this report is to provide design, application and maintenance engineers with basic information on the use of metallic Spring Energized sealing devices when used as piston (OD) and rod (ID) seals in aircraft fluid power components such as actuators, valves, and swivel glands. The Spring Energized seal is defined and the basic types in current use are described. Guidelines for selecting the type of Spring Energized seal for a given design requirement are covered in terms of friction, leakage, service life, installation characteristics, and interchangeability. Spring Energized seals can also be made in various forms and types, including face seals (internal and external pressure sealing types), and rotary variants too. These further types will not be discussed in this document, but many of the same principles apply for them as well.
HISTORICAL
2011-05-25
Standard
AIR6082
This AIR documents the methodologies used to calculate the dimensions and tolerances used in the following backup rings standards: AS5781 AS5782 AS5860 AS5861 In addition, an appendix is provided which provides details of gland and backup ring design practices.
CURRENT
2016-06-09
Standard
AIR6082A
This AIR documents the methodologies used to calculate the dimensions and tolerances used in the following backup rings standards: AS5781 AS5782 AS5860 AS5861 In addition, an appendix is provided which provides details of gland and backup ring design practices.
CURRENT
2010-12-02
Standard
AIR6079
The purpose of this report is to provide design, application and maintenance engineers with basic information on the use of metallic Spring Energized sealing devices when used as piston (OD) and rod (ID) seals in aircraft fluid power components such as actuators, valves, and swivel glands. The Spring Energized seal is defined and the basic types in current use are described. Guidelines for selecting the type of Spring Energized seal for a given design requirement are covered in terms of friction, leakage, service life, installation characteristics, and interchangeability. Spring Energized seals can also be made in various forms and types, including face seals (internal and external pressure sealing types), and rotary variants too. These further types will not be discussed in this document, but many of the same principles apply for them as well.
CURRENT
2014-11-06
Standard
AIR786B
This document contains data relative to the chemical nature of aerospace fluids and relates each to its empirical effect upon elastomeric components. Since the compatibilities of elastomers are determined by the compounding as well as the nature of the base polymer, the elastomers considered are limited to finished compounds for which material or performance specifications can be referenced.
HISTORICAL
1972-04-18
Standard
AIR786A
This document contains data relative to the chemical nature of aerospace fluids and relates each to its effect upon elastomeric components. Since the compatibilities of elastomers are determined by the compounding as well as the nature of the base polymer, the elastomers considered are limited to finished compounds for which material or performance specifications could be referenced.
2004-10-01
WIP Standard
AIR1244B
The slipper seal is defined and the basic types in current use are described. Guidelines for selecting the type of slipper seal for a given design requirement are covered in terms of friction, leakage, service life, installation characteristics, and interchangeability.
HISTORICAL
1973-06-01
Standard
AIR1244
The SLIPPER SEAL is defined and the basic types in current use are described. Guide lines for selecting the type of Slipper Seal for a given design requirement are covered in terms of friction, leakage, service life, installation characteristics and interchangeability.
CURRENT
2013-02-10
Standard
AIR1243C
This SAE Aerospace Information Report (AIR) provides information on anti blow-by design practice for cap seals. Suggestions for piston cap seal sidewall notch design and other anti blow-by design details are also described. It also includes information on two key investigations based on the XC-142 as part of the text and as Appendix A.
HISTORICAL
1999-12-01
Standard
AIR1243B
This SAE Aerospace Information Report (AIR) provides information on anti blow-by design practice for cap seals. Suggestions for piston cap seal sidewall notch design and other anti blow-by design details are also described. It also includes information on two key investigations based on the XC-142 as part of the text and as Appendix A.
CURRENT
1988-10-01
Standard
AIR1244A
The slipper seal is defined and the basic types in current use are described. Guide lines for selecting the type of slipper seal for a given design requirement are covered in terms of friction, leakage, service life, installation characteristics, and interchangeability.
HISTORICAL
1978-03-01
Standard
AIR1243
This SAE Aerospace Information Report (AIR) provides information on anti blow-by design practice for cap-strip seals. Suggestions for piston cap strip seal sidewall notch design and other anti blow-by design details are also described. It also includes information on two key investigations based on the XC-142 as part of the text and as Appendix A. The purpose of this document is to provide adequate information to the designer so that the problem will not reoccur.
HISTORICAL
1989-01-01
Standard
AIR1243A
Suggestions for piston cap-strip seal side wall notch design and other anti blowby design details are described.
HISTORICAL
1969-11-01
Standard
AIR1077
An attempt has been made to consider all features of seal ring design including configuration, materials, hardness, dimensions, surface finishes, surface treatment, leak testing, and general quality. In addition to this, allowable cylinder breathing and general quality requirements of mating hardware are discussed. Also, at the end of this report, there is a brief paragraph on other types of seal rings.
CURRENT
2011-12-19
Standard
AIR1077A
An attempt has been made to consider all features of seal ring design including configuration, materials, hardness, dimensions, surface finishes, surface treatment, leak testing, and general quality. In addition to this, allowable cylinder breathing and general quality requirements of mating hardware are discussed. Also, at the end of this report, there is a brief paragraph on other types of seal rings.
CURRENT
2015-12-08
Standard
AMSR83248/1A
The purpose of this specification sheet is to set up a standardized part numbering system for o-rings procured to MIL-R-83248, Class 1 (75 ± 5 hardness).
CURRENT
2015-12-08
Standard
AMSR83248/2A
The purpose of this specification sheet is to set up a standardized part numbering system for o-rings procured to MIL-R-83248, Class 2 (90 ± 5 hardness).
CURRENT
2011-03-06
Standard
AMSP83461/2A
The purpose of this specification sheet is to set up a standardized part numbering system for O-rings procured to MIL-P-83461 for use in straight thread tube boss fittings.
HISTORICAL
1992-01-01
Standard
ARP1802A
The backup ring is defined. The various types designed for use with O-rings in MIL-G-5514 packing glands, and MS33566 and MS21344 universal fitting installations are described. Guidelines are included for selecting backup rings and backup ring materials. Backup ring installation procedures and precautions are described.
Viewing 1 to 30 of 135