Criteria

Text:
Content:
Display:

Results

Viewing 1 to 30 of 89
HISTORICAL
2013-01-04
Standard
AIR5691
This document is applicable to commercial and military aircraft fuel quantity indication systems. It is intended to give guidance for system design and installation. It describes key areas to be considered in the design of a modern fuel system, and builds upon experiences gained in the industry in the last 10 years.
CURRENT
2017-05-18
Standard
AIR5691A
This document is applicable to commercial and military aircraft fuel quantity indication systems. It is intended to give guidance for system design and installation. It describes key areas to be considered in the design of a modern fuel system, and builds upon experiences gained in the industry in the last 10 years.
CURRENT
2012-12-11
Standard
AIR5774
This SAE Aerospace Information Report (AIR) is a compilation of engineering references and data useful to the technical community that can be used to ensure fuel system compatibility with composite structure. This AIR is not a complete detailed design guide and is not intended to satisfy all potential fuel system applications. Extensive research, design, and development are required for each individual application.
2010-08-09
WIP Standard
AIR6148
Informational discussion on Jet Fuels being introduced that are produced from feed stocks other than the traditional petroleum crude oils.
2015-04-21
WIP Standard
AIR6325
This Aerospace Information Report (AIR) is intended to provide comprehensive reference and background information pertaining to aircraft point level sensing
2017-10-20
WIP Standard
AIR5128B
This SAE Aerospace Information Report (AIR) is limited to the subject of aircraft fuel systems and the questions concerning the requirements for electrical bonding of the various components of the system as related to Static Electric Charges, Fault Current, Electromagnetic Interference (EMI) and Lightning Strikes (Direct and Indirect Effects). This AIR contains engineering guidelines for the design, installation, testing (measurement) and inspection of electrical bonds.
HISTORICAL
1997-01-01
Standard
AIR5128
This SAE Aerospace Information Report (AIR) is limited to the subject of aircraft fuel system plumbing systems and the questions concerning the requirements for electrical bonding of the various components of the system as related to Static Electric Charges, Electromagnectic Interference (EMI) and Lightning Strikes (Direct and Indirect Effects)
CURRENT
2012-12-18
Standard
AIR5128A
This SAE Aerospace Information Report (AIR) is limited to the subject of aircraft fuel systems and the questions concerning the requirements for electrical bonding of the various components of the system as related to Static Electric Charges, Fault Current, Electromagnetic Interference (EMI) and Lightning Strikes (Direct and Indirect Effects). This AIR contains engineering guidelines for the design, installation, testing (measurement) and inspection of electrical bonds.
CURRENT
2012-01-03
Standard
AIR5455A
This SAE Aerospace Information Report (AIR) discusses the impact of the ISO Test Dusts, chosen as replacement contaminants for the Arizona Test Dusts (AC Test Dusts), and the ISO calibration procedure ISO 11171 for automatic particle counters, which replaces the calibration procedure ISO 4402 (1991), on laboratory performance of filter elements utilized in aerospace lubrication, hydraulic and fuel systems, and fluid cleanliness levels determined with automatic particle counters.
HISTORICAL
2003-07-03
Standard
AIR5455
This SAE Aerospace Information Report (AIR) discusses the impact of the ISO Test Dusts, chosen as replacement contaminants for the Arizona Test Dusts (AC Test Dusts), and the ISO calibration procedure ISO 11171 for automatic particle counters, which replaces the calibration procedure ISO 4402 (1991), on laboratory performance of filter elements utilized in aerospace lubrication, hydraulic and fuel systems, and fluid cleanliness levels determined with automatic particle counters.
2015-05-20
WIP Standard
AIR6510
This SAE Aerospace Information Report (AIR) comprises the technical terms and nomenclature, together with their definitions and abbreviations that are used in Aircraft Fuel Systems.
HISTORICAL
1976-03-20
Standard
AIR790A
HISTORICAL
1964-04-20
Standard
AIR790
In the past, incidents and accidents occurred in the operation of military and civil aircraft which were attributed to the formation of ice in the engine fuel supply system resulting in intermittent or complete starvation of fuel flow. Considerable effort was devoted by many airframe companies, engine and accessory manufacturers and government agencies to study the problem of ice formation and to evolve corrective measures. By its very nature, the problem of ice formation was difficult to identify and analyze. However, corrective measures were developed which virtually eliminated serious icing problems in aircraft fuel systems. For many years incidents and accidents have not occurred on aircraft equipped with fuel heaters and/or operated with fuel containing anti-icing additive.
CURRENT
2006-08-24
Standard
AIR790C
Ice formation in aircraft fuel systems results from the presence of dissolved and undissolved water in the fuel. Dissolved water or water in solution with hydrocarbon fuels constitutes a relatively small part of the total water potential in a particular system with the quantity dissolved being primarily dependent on the fuel temperature and the water solubility characteristics of the fuel. One condition of undissolved water is entrained water such as water particles suspended in the fuel as a result of mechanical agitation of free water or conversion of dissolved water through temperature reduction. Another condition of undissolved water is free water which may be introduced as a result of refueling or the settling of entrained water which collects at the bottom of a fuel tank in easily detectable quantities separated by a continuous interface from the fuel above. Water may also be introduced as a result of condensation from air entering a fuel tank through the vent system.
HISTORICAL
1999-10-01
Standard
AIR790B
This document suggests and summarizes points that should be considered with respect to the formation of ice in aircraft fuel systems. These summaries represent a cross-section of the opinions of fuel system designers and users.
2017-04-06
WIP Standard
AIR7484
This document discusses various specification and fit for purpose characteristics of jet fuel, and how these impact fuel system design
HISTORICAL
1989-03-01
Standard
AIR1184A
This report is intended to identify the necessary analytical tools to enable making value judgments for minimizing the various errors typically encountered in capacitance systems. Thus, in addition to identification of error sources, it describes the basic factors which cause the errors. When coupled with appraisals of the relative costs of minimizing the errors, this knowledge will furnish a tool with which to optimize gauging system accuracy, and thus, to obtain the optimum overall system within the constraints imposed by both design and budgetary considerations. Since the subject of capacitance accuracy is quite complex, no attempt is made herein to present a fully-comprehensive evaluation of all factors affecting gauging system accuracy. Rather, the major contributors to gauging system inaccuracy are discussed and emphasis is given to simplicity and clarity, somewhat at the expense of completeness. An overview of Capacitive Fuel Gauging operation is provided in the Appendix.
CURRENT
2016-08-12
Standard
AIR1184B
This report is intended to identify the various errors typically encountered in capacitance fuel quantity measurement systems. In addition to identification of error sources, it describes the basic factors which cause the errors. When coupled with appraisals of the relative costs of minimizing the errors, this knowledge will furnish a tool with which to optimize gauging system accuracy, and thus, to obtain the optimum overall system within the constraints imposed by both design and budgetary considerations. Since the subject of fuel measurement accuracy using capacitance based sensing is quite complex, no attempt is made herein to present a fully-comprehensive evaluation of all factors affecting gauging system accuracy. Rather, the major contributors to gauging system inaccuracy are discussed and emphasis is given to simplicity and clarity, somewhat at the expense of completeness. An overview of capacitive fuel gauging operation can be found in AIR5691.
HISTORICAL
1973-01-01
Standard
AIR1184
It is intended to provide capacitance gaging system "specifiers" with the necessary tools to make value judgements concerning the various errors typically encountered in systems of this type. Thus, in addition to merely identifying the error-causes, descriptions are given concerning the basic factors from which these error-causes derive. This knowledge, when complemented with appraisals of the relative costs of minimizing the error-causes, will furnish the system specifier with a powerful tool with which to optimize gaging system accuracy, and thus, to obtain the "best possible" overall system within the constraints imposed by both design and budgetary considerations. Since the subject of capacitance gaging accuracy is quite extensive, and in some instances very complex, no attempt is made herein to present an all-inclusive and fully comprehensive evaluation of the subject. Rather, the major contributors to gaging system inaccuracy are discussed.
HISTORICAL
1992-02-01
Standard
AIR1082B
The importance of adequate component procurement specifications to the success of a hardware development program cannot be overemphasized. Specifications which are too stringent can be as detrimental as specifications which are too lax. Performance specifications must not only identify all of the component requirements, but they must also include sufficient quality assurance provisions so that compliance can be verified. It should be understood that in almost every case specifications for components will ultimately become part of a BINDING, WRITTEN CONTRACT (PO). The purpose of this document is to describe types of specifications, provide guidance for the preparation of fluid component specifications, and identify documents commonly referenced in fluid component specifications.
HISTORICAL
1983-06-01
Standard
AIR1082A
The "Scope" section may be a very brief statement describing the coverage of the specification for a simple device, or it may require a long description of limiting parameters for a more complex device or system having a complicated interface definition.
CURRENT
2013-10-04
Standard
AIR1082C
The importance of adequate component procurement specifications to the success of a hardware development program cannot be overemphasized. Specifications which are too stringent can be as detrimental as specifications which are too lax. Performance specifications must not only identify all of the component requirements, but they must also include sufficient quality assurance provisions so that compliance can be verified. It should be understood that in almost every case specifications for components will ultimately become part of a BINDING, WRITTEN CONTRACT (PO). The purpose of this document is to describe types of specifications, provide guidance for the preparation of fluid component specifications, and identify documents commonly referenced in fluid component specifications.
HISTORICAL
1970-05-01
Standard
AIR1082
The importance of adequate component procurement specifications to the success of a hardware development program cannot be overemphasized. Specifications which are too stringent can be as detrimental as specifications which are too lax. Performance specifications, for instance, must not only identify all the component requirements, but they must also include sufficient quality assurance provisions so that compliance can be verified. It should be understood that in almost every case specifications for components will ultimately become part of a BINDING, WRITTEN CONTRACT (PO). The purpose of this document is to describe specifications, provide guidance for the preparation of fluid component specifications, and identify documents commonly referenced in fluid component specifications.
CURRENT
1986-09-01
Standard
AIR1408A
This report lists documents that aid and govern the design of gas turbine powered aircraft and missile fuel systems. The report lists the military and industry specifications and standards and the most notable design handbooks that are commonly used in fuel system design. The specifications and standards section has been divided into two parts, a master list arranged numerically of all industry and military specifications and standards and a component list that provides a functional breakdown and a cross-reference of these documents. It is intended that this report be a supplement to specifications MIL-F-8615, MIL-F-17874, MIL-F-38363 and MIL-F-87154. Revisions and amendments which are correct for the specifications and standards are not listed. The fuel system design handbooks are listed for fuels and for system and component design.
HISTORICAL
1976-03-01
Standard
AIR1408
This report lists military and industry specifications and standards which are commonly used in aerospace gas turbine fuel systems. It is intended as a supplement to specifications MIL-F-3863, MIL-F-17874 and MIL-F-8615. Revisions and amendments which are current for these specifications and standards are not listed.
2013-08-01
WIP Standard
AIR1408B
This report lists documents that aid and govern the design of gas turbine powered aircraft and missile fuel systems. The report lists the military and industry specifications and standards and the most notable design handbooks that are commonly used in fuel system design. The specifications and standards section has been divided into two parts, a master list arranged numerically of all industry and military specifications and standards and a component list that provides a functional breakdown and a cross-reference of these documents. It is intended that this report be a supplement to specifications MIL-F-8615; MIL-F-17874; MIL-F-38363 and MIL-F-87154. Revisions and amendments which are correct for the specifications and standards are not listed. The fuel system design handbooks are listed for fuels and for system and component design.
2017-03-07
WIP Standard
AIR1616B
This document defines design, performance, and test criteria for self-sealing breakaway valves.
CURRENT
2012-01-03
Standard
AIR1616A
This document defines design, performance, and test criteria for self-sealing breakaway valves.
HISTORICAL
1983-04-04
Standard
AIR1616
This document defines design, performance, and test criteria for self-sealing breakaway valves.
Viewing 1 to 30 of 89