Criteria

Text:
Content:
Display:

Results

Viewing 1 to 30 of 83
HISTORICAL
2007-02-21
Standard
AIR5683
MIL-STD-1553 establishes requirements for digital command/response time division multiplexing (TDM) techniques on military vehicles, especially aircraft. The existing MIL-STD-1553 network operates at a bit rate of 1 Mbps and is limited by the protocol to a maximum data payload capacity of approximately 700 kilobits per second. The limited capacity of MIL-STD-1553 buses coupled with emerging data rich applications for avionics platforms plus the expense involved with changing or adding wires to thousands of aircraft in the fleet has driven the need for expanding the data carrying capacity of the existing MIL-STD-1553 infrastructure.
CURRENT
2016-10-21
Standard
AIR5683A
MIL-STD-1553 establishes requirements for digital command/response time division multiplexing (TDM) techniques on military vehicles, especially aircraft. The existing MIL-STD-1553 network operates at a bit rate of 1 Mbps and is limited by the protocol to a maximum data payload capacity of approximately 700 kilobits per second. The limited capacity of MIL-STD-1553 buses coupled with emerging data rich applications for avionics platforms plus the expense involved with changing or adding wires to thousands of aircraft in the fleet has driven the need for expanding the data carrying capacity of the existing MIL-STD-1553 infrastructure.
HISTORICAL
1991-09-03
Standard
AIR4272
This AIR is applicable to SSPCs, EMPCs, and hybrid power controllers. It covers the control, status, BIT, etc., interfaces, other than electrical power. For the purpose of this document, a power controller shall have, as a minimum, the following characteristics: Power switching function Control input Overload protection Status feedback To accomplish the goals set forth in the Foreword, the interfaces are first categorized by function. Next, examples of actual implementations are given.
CURRENT
2006-05-22
Standard
AIR4272A
This AIR is applicable to SSPCs, EMPCs, and hybrid power controllers. It covers the control, status, BIT, etc., interfaces, other than electrical power. For the purpose of this document, a power controller shall have, as a minimum, the following characteristics: a. Power switching function b. Control input c. Overload protection d. Status feedback To accomplish the goals set forth in the Foreword, the interfaces are first categorized by function. Next, examples of actual implementations are given.
CURRENT
2016-10-21
Standard
AIR4271A
This Aerospace Information Report (AIR) has been prepared by the Systems Applications and Requirements Subcommittee of SAE Committee AS-2. It is intended to provide guidance primarily, but not exclusively, for specifiers and designers of data communication systems for real time military avionics applications within a platform. The subject of high speed data transmission is addressed from two standpoints: (1) the influence of developments in technology on avionics architectures as a whole and (2) the way in which specific problems, such as video, voice, closed loop control, and security may be handled. While the material has been prepared against a background of experience within SAE AS-2 relating to the development of a family of high speed interconnect standards, reference to specific standards and interconnect systems is minimized.
HISTORICAL
1989-11-01
Standard
AIR4271
This Aerospace Information Report (AIR) has been prepared by the Systems Applications and Requirements Subcommittee of SAE Committee AS-2. It is intended to provide guidance primarily, but not exclusively, for specifiers and designers of data communication systems for real time military avionics applications within a platform. The subject of high speed data transmission is addressed from two standpoints: (1) the influence of developments in technology on avionics architectures as a whole and (2) the way in which specific problems, such as video, voice, closed loop control, and security may be handled. While the material has been prepared against a background of experience within SAE AS-2 relating to the development of a family of high speed interconnect standards, reference to specific standards and interconnect systems is minimized.
CURRENT
2012-05-03
Standard
AIR4288A
This document is intended to explain, in detail, the rationale behind the features and functions of the AS4074, Linear, Token-passing, Bus (LTPB). The discussions also address the considerations which a system designer should take into account when designing a system using this bus. Other information can be found in these related documents: AIR4271 - Handbook of System Data Communication AS4290 - Validation Test Plan for AS4074
HISTORICAL
1995-02-01
Standard
AIR4289
This Handbook has been prepared by the Ring Implementation Task Group of the SAE AS-2 Committee, and is intended to support AS4075 by providing explanation of the standard itself and guidance on its use. The principal objective in the preparation of a standard is to provide a statement of operational and performance requirements, and an unambiguous definition of the functions to be realized in any implementation, primarily from the view point of interoperability. While efforts have been made within the AS4075 standard to provide a readable general description of the HSRB, detailed explanations, rationale and guidance to the use are incompatible with the purpose and, indeed, the format of a standard. Accordingly, this Handbook contains a paragraph-by-paragraph explanation of the main sections of the standard, and a discussion of application and implementation issues.
HISTORICAL
1992-12-30
Standard
AIR4288
This document is intended to explain, in detail, the rationale behind the features and functions of the AS4074, Linear, Token-passing, Bus (LTPB). The discussions also address the considerations which a system designer should take into account when designing a system using this bus. Other information can be found in these related documents:
CURRENT
2012-05-03
Standard
AIR4289A
This Handbook has been prepared by the Ring Implementation Task Group of the SAE AS-2 Committee, and is intended to support AS4075 by providing explanation of the standard itself and guidance on its use. The principal objective in the preparation of a standard is to provide a statement of operational and performance requirements, and an unambiguous definition of the functions to be realized in any implementation, primarily from the view point of interoperability. While efforts have been made within the AS4075 standard to provide a readable general description of the HSRB, detailed explanations, rationale and guidance to the use are incompatible with the purpose and, indeed, the format of a standard. Accordingly, this Handbook contains a paragraph-by-paragraph explanation of the main sections of the standard, and a discussion of application and implementation issues.
HISTORICAL
1992-10-30
Standard
AIR4295
This document contains guidance for using SAE publications, AS4112 through AS4117 (MIL-STD-1553 related Test Plans). Included herein are the referenced test plan paragraphs numbers and titles, the purpose of the test, the associated MIL-STD-1553 paragraph, commentary concerning test methods and rationale, and instrumentation requirements.
CURRENT
2016-10-21
Standard
AIR4295A
This document contains guidance for using SAE publications, AS4112 through AS4117 (MIL-STD-1553 related Test Plans). Included herein are the referenced test plan paragraphs numbers and titles, the purpose of the test, the associated MIL-STD-1553 paragraph, commentary concerning test methods and rationale, and instrumentation requirements.
HISTORICAL
1972-03-01
Standard
AIR1189
All electrical and electronic signals within an aircraft are potential candidates for multiplexing, although the determination of whether or not they are multiplexed is a matter for individual system consideration. However, those signals that are selected for multiplexing preferably should conform to the characteristics included in this AIR.
CURRENT
1972-01-01
Standard
AIR1207
Today's sophisticated aircraft are required to effectively perform a variety of missions. With the advent of micro-miniaturization in electronics and advanced digital computers, a new generation of avionics equipment and systems can be utilized to increase the capabilities of the aircraft. As the quantity and variety of equipment and functions increases, the problems of inter-connecting these equipments with wires presents a constraint on size, weight, signal conditioning, reliability, maintainability and electromagnetic control. Conventional wiring has resulted in large bundles of wires and many connectors which adds excessive weight and reduces the space available for the pilot and other vital elements. This limitation can be relieved significantly by the application of well proven multiplexing techniques.
CURRENT
2006-05-22
Standard
AIR1189A
All electrical and electronic signals within an aircraft are potential candidates for multiplexing, although the determination of whether or not they are multiplexed is a matter for individual system consideration. However, those signals that are selected for multiplexing preferably should conform to the characteristics included in this AIR.
2013-10-22
WIP Standard
AIR5654A
This handbook is intended to accompany or incorporate AS5643 IEEE-1394b Interface Requirements for Military and Aerospace Vehicle Applications, AS5643/1 S400 Copper Media Interface Characteristics over Extended Distances, AS5657 Test Plan/Procedure for AS5643 IEEE-1394b Interface Requirements for Military and Aerospace Vehicle Applications, AS5706 Test Plan/procedure for AS5643/1 S400 Copper Media Interface Characteristics Over Extended Distances, and ARD5708 Frequently Asked Questions about IEEE-1394b and SAE AS5643. In addition, full understanding of this handbook also requires knowledge of IEEE-1394-1995, IEEE-1394a and IEEE-1394b standards. This handbook contains detailed explanations and architecture analysis on AS5643, bus timing and scheduling considerations, system redundancy design considerations, suggestions on AS5643-based system configurations, cable selection guidance, and lessons learned on failure modes.
CURRENT
2009-04-01
Standard
AIR5654
This handbook is intended to accompany or incorporate AS5643 IEEE-1394b Interface Requirements for Military and Aerospace Vehicle Applications, AS5643/1 S400 Copper Media Interface Characteristics over Extended Distances, AS5657 Test Plan/Procedure for AS5643 IEEE-1394b Interface Requirements for Military and Aerospace Vehicle Applications, AS5706 Test Plan/procedure for AS5643/1 S400 Copper Media Interface Characteristics Over Extended Distances, and ARD5708 Frequently Asked Questions about IEEE-1394b and SAE AS5643. In addition, full understanding of this handbook also requires knowledge of IEEE-1394-1995, IEEE-1394a and IEEE-1394b standards. This handbook contains detailed explanations and architecture analysis on AS5643, bus timing and scheduling considerations, system redundancy design considerations, suggestions on AS5643-based system configurations, cable selection guidance, and lessons learned on failure modes.
CURRENT
2012-05-03
Standard
AIR4903A
This section defines the scope of the document, provides a brief history of the Pi-Bus, discusses key features of the Pi-Bus, and provides an overview of the operation of the Pi-Bus. This document is a handbook intended to accompany AS4710 Pi-Bus standard. The purpose of this document is to provide information to aid users of the Pi-Bus, whether they be implementors of Pi-Bus controllers, architects of systems considering using the Pi-Bus, or programmers who must develop applications in a system which uses the Pi-Bus as the backplane communications bus. This document also provides rationale for many of the Pi-Bus requirements as defined in AS4710 and a discussion of potential enhancements that are being considered for the Pi-Bus.
HISTORICAL
1996-01-01
Standard
AIR4903
This section defines the scope of the document, provides a brief history of the Pi-Bus, discusses key features of the Pi-Bus, and provides an overview of the operation of the Pi-Bus. This document is a handbook intended to accompany AS4710 Pi-Bus standard. The purpose of this document is to provide information to aid users of the Pi-Bus, whether they be implementors of Pi-Bus controllers, architects of systems considering using the Pi-Bus, or programmers who must develop applications in a system which uses the Pi-Bus as the backplane communications bus. This document also provides rationale for many of the Pi-Bus requirements as defined in AS4710 and a discussion of potential enhancements that are being considered for the Pi-Bus.
HISTORICAL
1996-11-01
Standard
AIR4980
The original purpose of this document was to establish interface requirements for modular avionics backplanes to be prototyped up to 1995. The document was issued as ARD50011 in September 1992. It is being reissued as an SAE Aerospace Information Report (AIR) in order to: Preserve the requirements for more than 2 years Support design of retrofits and avionics systems to be fielded in the years 1995 to 2000 Provide a baseline for updating the requirements of future integrated systems These requirements were and are intended to promote standardization of modular avionic backplane interfaces. These requirements have been driven predominantly, but not exclusively, by aerospace type military platforms.
CURRENT
2012-05-03
Standard
AIR4980A
The original purpose of this document was to establish interface requirements for modular avionics backplanes to be prototyped up to 1995. The document was issued as ARD50011 in September 1992. It is being reissued as an SAE Aerospace Information Report (AIR) in order to: Preserve the requirements for more than 2 years Support design of retrofits and avionics systems to be fielded in the years 1995 to 2000 Provide a baseline for updating the requirements of future integrated systems These requirements were and are intended to promote standardization of modular avionic backplane interfaces. These requirements have been driven predominantly, but not exclusively, by aerospace type military platforms.
HISTORICAL
1996-04-01
Standard
AIR4886
The purpose of this document is to establish the requirements for Real-Time Communication Protocols (RTCP). Systems for real-time applications are characterized by the presence of hard deadlines where failure to meet a deadline must be considered a system fault. These requirements have been driven predominantly, but not exclusively, by aerospace type military platforms and commercial aircraft, but are generally applicable to any distributed, real-time, control systems. These requirements are primarily targeted for the Transport and Network Layers of peer to peer protocols, as referenced in the Open System Interconnect Reference Model (2.2.1 and 2.2.2), developed by the International Standards Organization (ISO). These requirements are intended to complement SAE AS4074 (2.1.1) and AS4075 (2.1.2), and future SAE communications standards.
CURRENT
2016-10-21
Standard
AIR4886A
The purpose of this document is to establish the requirements for Real-Time Communication Protocols (RTCP). Systems for real-time applications are characterized by the presence of hard deadlines where failure to meet a deadline must be considered a system fault. These requirements have been driven predominantly, but not exclusively, by aerospace type military platforms and commercial aircraft, but are generally applicable to any distributed, real-time, control systems. These requirements are primarily targeted for the Transport and Network Layers of peer to peer protocols, as referenced in the Open System Interconnect Reference Model (2.2.1 and 2.2.2), developed by the International Standards Organization (ISO). These requirements are intended to complement SAE AS4074 (2.1.1) and AS4075 (2.1.2), and future SAE communications standards.
CURRENT
2006-05-22
Standard
ARP4258A
The purpose of this Aerospace Recommended Practice (ARP) is to provide recommendations on the use of four types of discrete signal interfaces for unidirectional, low power, low frequency transmission of discrete information.
HISTORICAL
1990-10-25
Standard
ARP4258
The purpose of this Aerospace Recommended Practice (ARP) is to provide recommendations on the use of four types of discrete signal interfaces for unidirectional, low power, low frequency transmission of discrete information.
2013-11-05
WIP Standard
AS5706A
This document establishes test plans/procedures for the AS5643/1 Slash Sheet. The AS5643/1 Slash Sheet establishes guidelines for the use of IEEE-1394b as a data bus network in military and aerospace vehicles. It encompasses the data bus cable and its interface electronics for a system utilizing S400 over copper medium over extended lengths.
CURRENT
2007-05-01
Standard
AS5706
This document establishes test plans/procedures for the AS5643/1 Slash Sheet. The AS5643/1 Slash Sheet establishes guidelines for the use of IEEE-1394b as a data bus network in military and aerospace vehicles. It encompasses the data bus cable and its interface electronics for a system utilizing S400 over copper medium over extended lengths.
2013-11-19
WIP Standard
AS5643/1A
This SAE Aerospace Standard (AS) establishes guidelines for the use of IEEE-1394b as a data bus network in military and aerospace vehicles. It encompasses the data bus cable and its interface electronics for a system utilizing S400 over copper medium over extended lengths. This document contains extensions/restrictions to "off-the-shelf " IEEE-1394 standards, and assumes that the reader already has a working knowledge of IEEE-1394. This document does not identify specific environmental requirements (electromagnetic compatibility, temperature, vibration, etc.); such requirements will be vehicle-specific and even LRU-specific. However, the hardware requirements and examples contained herein do address many of the environmental conditions that military and aerospace vehicles may experience. One should reference the appropriate sections of MIL-STD-461E for their particular LRU, and utilize handbooks such as MIL-HDBK-454A and MIL-HDBK-5400 for guidance.
HISTORICAL
2006-10-13
Standard
AS5643A
This SAE Aerospace Standard (AS) establishes the requirements for the use of IEEE-1394b as a data bus network in military and aerospace vehicles. It defines the concept of operations and information flow on the network. As discussed in 1.4, this specification contains extensions/restrictions to “off-the-shelf” IEEE-1394 standards, and assumes that the reader already has a working knowledge of IEEE-1394. This document is referred to as the “base” specification, containing the generic requirements that specify data bus characteristics, data formats and node operation. It is important to note that this specification is not stand-alone - several requirements provide only example implementations and delegate the actual implementation to be specified by the network architect/integrator for a particular vehicle application. This information is typically contained in a “network profile” slash sheet that is subservient to this base specification.
CURRENT
2016-04-04
Standard
AS5643B
IEEE-1394b, Interface Requirements for Military and Aerospace Vehicle Applications, establishes the requirements for the use of IEEE Std 1394™-2008 as a data bus network in military and aerospace vehicles. The portion of IEEE Std 1394™-2008 standard used by AS5643 is referred to as IEEE-1394 Beta (formerly referred to as IEEE-1394b.) It defines the concept of operations and information flow on the network. As discussed in 1.4, this specification contains extensions/restrictions to “off-the-shelf” IEEE-1394 standards and assumes the reader already has a working knowledge of IEEE-1394. This document is referred to as the “base” specification, containing the generic requirements that specify data bus characteristics, data formats, and node operation.
Viewing 1 to 30 of 83