Criteria

Text:
Content:
Display:

Results

Viewing 1 to 30 of 93
CURRENT
2016-08-02
Standard
J1122_201608
The following SAE Recommended Practice furnishes sample forms for helical compression, extension and torsion springs to provide a uniform method for specifying design information. It is not necessary to fill in all the data, but sufficient information must be supplied to fully describe the part and to satisfy the requirements of its application. For detailed information, see “Design and Application of Helical and Spiral Springs - SAE HS 795”, also “Helical Compression and Extension Spring Terminology - SAE J1121”. Both of these documents use SI (metric) Units in accordance with the provisions of SAE TSB 003, as does SAE J1122. Here, however, the U.S. Customary Units (in, lb, psi) have been added in parentheses after each SI Unit for the convenience of the user who must furnish specifications on a project where all requirements are listed in non-metric terms.
HISTORICAL
2004-10-11
Standard
J1122_200410
The following SAE Recommended Practice furnishes sample forms for helical compression, extension and torsion springs to provide a uniform method for specifying design information. It is not necessary to fill in all the data, but sufficient information must be supplied to fully describe the part and to satisfy the requirements of its application. For detailed information, see “Design and Application of Helical and Spiral Springs - SAE HS 795”, also “Helical Compression and Extension Spring Terminology - SAE J1121”. Both of these documents use SI (metric) Units in accordance with the provisions of SAE TSB 003, as does SAE J1122. Here, however, the U.S. Customary Units (in, lb, psi) have been added in parentheses after each SI Unit for the convenience of the user who must furnish specifications on a project where all requirements are listed in non-metric terms.
CURRENT
2016-08-02
Standard
J1121_201608
The following recommended practice has been developed to assist engineers and designers in the preparation of specifications for the major types of helical compression and extension springs. It is restricted to a concise presentation of items which will promote an adequate understanding between spring manufacturer and spring user of the major practical requirements in the finished spring. Closer tolerances are obtainable where greater accuracy is required and the increased cost is justified. For the basic concepts underlying the spring design and for many of the details, see the SAE Information Report MANUAL ON DESIGN AND APPLICATION OF HELICAL AND SPIRAL SPRINGS, SAE HS 795, which is available from SAE Headquarters in Warrendale, PA 15096. A uniform method for specifying design information is shown in the TYPICAL DESIGN CHECK LISTS FOR HELICAL SPRINGS, SAE J1122.
HISTORICAL
2006-09-12
Standard
J1121_200609
The following recommended practice has been developed to assist engineers and designers in the preparation of specifications for the major types of helical compression and extension springs. It is restricted to a concise presentation of items which will promote an adequate understanding between spring manufacturer and spring user of the major practical requirements in the finished spring. Closer tolerances are obtainable where greater accuracy is required and the increased cost is justified. For the basic concepts underlying the spring design and for many of the details, see the SAE Information Report MANUAL ON DESIGN AND APPLICATION OF HELICAL AND SPIRAL SPRINGS, SAE HS 795, which is available from SAE Headquarters in Warrendale, PA 15096. A uniform method for specifying design information is shown in the TYPICAL DESIGN CHECK LISTS FOR HELICAL SPRINGS, SAE J1122.
CURRENT
2016-04-05
Standard
J1123_201604
NOTE—For leaf springs made to customary U.S. units, see SAE J510. This SAE Standard is limited to concise specifications promoting an adequate understanding between spring maker and spring user on all practical requirements in the finished spring. The basic concepts for the spring design and for many of the details have been fully dealt with in HS-J788.
HISTORICAL
1992-11-01
Standard
J1123_199211
NOTE—For leaf springs made to customary U.S. units, see SAE J510. This SAE Standard is limited to concise specifications promoting an adequate understanding between spring maker and spring user on all practical requirements in the finished spring. The basic concepts for the spring design and for many of the details have been fully dealt with in HS-J788.
HISTORICAL
1989-06-01
Standard
J1120_198906
This SAE Standard covers the general and dimensional data for industrial quality spherical rod ends commonly used on control linkages in automotive, marine, construction, and industrial equipment applications. The rod ends described are available from several manufacturers within the range of the interchangeable specifications. The sliding contact spherical self-aligning bearing members (ball and socket) are available in a variety of materials in types shown. The load capacities and wear capabilities vary considerably with the design and fabrication. It is suggested that the manufacturers be consulted for recommendations for the type and design appropriate to particular applications.
CURRENT
2012-10-15
Standard
J1120_201210
This SAE Standard covers the general and dimensional data for industrial quality spherical rod ends commonly used on control linkages in automotive, marine, construction, and industrial equipment applications. The rod ends described are available from several manufacturers within the range of the interchangeable specifications. The sliding contact spherical self-aligning bearing members (ball and socket) are available in a variety of materials in types shown. The load capacities and wear capabilities vary considerably with the design and fabrication. It is suggested that the manufacturers be consulted for recommendations for the type and design appropriate to particular applications.
HISTORICAL
1975-07-01
Standard
J1120_197507
This SAE Standard covers the general and dimensional data for industrial quality spherical rod ends commonly used on control linkages in automotive, marine, construction, and industrial equipment applications. The rod ends described are available from several manufacturers within the range of the interchangeable specifications. The sliding contact spherical self-aligning bearing members (ball and socket) are available in a variety of materials in types shown. The load capacities and wear capabilities vary considerably with the design and fabrication. It is suggested that the manufacturers be consulted for recommendations for the type and design appropriate to particular applications.
HISTORICAL
1979-09-01
Standard
J1120_197909
This SAE Standard covers the general and dimensional data for industrial quality spherical rod ends commonly used on control linkages in automotive, marine, construction, and industrial equipment applications. The rod ends described are available from several manufacturers within the range of the interchangeable specifications. The sliding contact spherical self-aligning bearing members (ball and socket) are available in a variety of materials in types shown. The load capacities and wear capabilities vary considerably with the design and fabrication. It is suggested that the manufacturers be consulted for recommendations for the type and design appropriate to particular applications.
HISTORICAL
1998-02-01
Standard
J1183_199802
The purpose of this SAE Recommended Practice is to review factors that influence the behavior of elastomers under conditions of dynamic stress and to provide guidance concerning laboratory procedures for determining the fatigue characteristics of elastomeric materials and fabricated elastomeric components.
CURRENT
2017-02-13
Standard
J1183_201702
The purpose of this SAE Recommended Practice is to review factors that influence the behavior of elastomers under conditions of dynamic stress and to provide guidance concerning laboratory procedures for determining the fatigue characteristics of elastomeric materials and fabricated elastomeric components.
HISTORICAL
1996-07-01
Standard
J1697_199607
This SAE Recommended Practice covers recommended practices for design and evaluation of hose clamped joints primarily in automotive applications. It is intended to: (a) evaluate current joint designs, (b) compare existing designs, (c) aid in the development of new designs, (d) give objective results once weights are set, (e) rate the overall design and individual sections of design, (f) encourage future research by industry and the OEM's.
HISTORICAL
2003-11-07
Standard
J1697_200311
This SAE Recommended Practice covers recommended practices for design and evaluation of hose clamped joints primarily in automotive applications. It is intended to: (a) evaluate current joint designs, (b) compare existing designs, (c) aid in the development of new designs, (d) give objective results once weights are set, (e) rate the overall design and individual sections of design, and (f) encourage future research by industry and the OEM's.
CURRENT
2013-07-09
Standard
J1697_201307
This SAE Recommended Practice covers recommended practices for design and evaluation of hose clamped joints primarily in automotive applications. It is intended to: (a) evaluate current joint designs, (b) compare existing designs, (c) aid in the development of new designs, (d) give objective results once weights are set, (e) rate the overall design and individual sections of design, and (f) encourage future research by industry and the OEM's.
HISTORICAL
1999-05-01
Standard
J1085_199905
These methods cover testing procedures for defining and specifying the dynamic characteristics of simple elastomers and simple fabricated elastomeric isolators used in vehicle components. Simple, here, is defined as solid (non-hydraulic) components tested at frequencies less than or equal to 25 Hz.
HISTORICAL
1989-06-01
Standard
J1086_198906
1. Scope 1.1 This SAE Recommended Practice describes a unified numbering system (UNS) for metals and alloys which have a "commercial standing" (see 6.1), and covers the procedure by which such numbers are assigned. Section 2 describes the system of alphanumeric designations or "numbers" established for each family of metals and alloys. Section 3 outlines the organization established for administering the system. Section 4 describes the procedure for requesting number assignment to metals and alloys for which UNS numbers have not previously been assigned. 1.2 The UNS provides a means of correlating many nationally used numbering systems currently administered by societies, trade associations, and individual users and producers of metals and alloys, thereby avoiding confusion caused by use of more than one identification number for the same material; and by the opposite situation of having the same number assigned to two or more entirely different materials.
HISTORICAL
1983-04-01
Standard
J1086_198304
1. Scope 1.1 This SAE Recommended Practice describes a unified numbering system (UNS) for metals and alloys which have a "commercial standing" (see 6.1), and covers the procedure by which such numbers are assigned. Section 2 describes the system of alphanumeric designations or "numbers" established for each family of metals and alloys. Section 3 outlines the organization established for administering the system. Section 4 describes the procedure for requesting number assignment to metals and alloys for which UNS numbers have not previously been assigned. 1.2 The UNS provides a means of correlating many nationally used numbering systems currently administered by societies, trade associations, and individual users and producers of metals and alloys, thereby avoiding confusion caused by use of more than one identification number for the same material; and by the opposite situation of having the same number assigned to two or more entirely different materials.
CURRENT
2012-10-15
Standard
J1086_201210
This SAE Recommended Practice describes a unified numbering system (UNS) for metals and alloys which have a "commercial standing" (see 6.1), and covers the procedure by which such numbers are assigned. Section 2 describes the system of alphanumeric designations or "numbers" established for each family of metals and alloys. Section 3 outlines the organization established for administering the system. Section 4 describes the procedure for requesting number assignment to metals and alloys for which UNS numbers have not previously been assigned.
HISTORICAL
1995-07-01
Standard
J1086_199507
1. Scope 1.1 This SAE Recommended Practice describes a unified numbering system (UNS) for metals and alloys which have a "commercial standing" (see 6.1), and covers the procedure by which such numbers are assigned. Section 2 describes the system of alphanumeric designations or "numbers" established for each family of metals and alloys. Section 3 outlines the organization established for administering the system. Section 4 describes the procedure for requesting number assignment to metals and alloys for which UNS numbers have not previously been assigned. 1.2 The UNS provides a means of correlating many nationally used numbering systems currently administered by societies, trade associations, and individual users and producers of metals and alloys, thereby avoiding confusion caused by use of more than one identification number for the same material; and by the opposite situation of having the same number assigned to two or more entirely different materials.
CURRENT
2017-02-09
Standard
J1085_201702
These methods cover testing procedures for defining and specifying the dynamic characteristics of simple elastomers and simple fabricated elastomeric isolators used in vehicle components. Simple, here, is defined as solid (non-hydraulic) components tested at frequencies less than or equal to 25 Hz.
CURRENT
2017-02-09
Standard
J1883_201702
The bushing "TRAC" code is intended to be a tool that will aid in the definition of the geometric environment for the test, or use, of an elastomeric bushing.
HISTORICAL
1994-10-01
Standard
J1883_199410
The bushing "TRAC" code is intended to be a tool that will aid in the definition of the geometric environment for the test, or use, of an elastomeric bushing.
CURRENT
1985-11-01
Standard
J1554_198511
The intent of this SAE Recommended Practice is to provide guidance to automobile repair shops and personnel in identifying high strength steel where used in vehicle components and in repairing these components when damaged.
HISTORICAL
1993-10-13
Standard
J1563_199310
These guidelines are intended for those engineers and scientists who evaluate the corrosion performance of painted automotive parts in laboratory cyclic tests. The guidelines are intended to help ensure that the results of the tests can be used to reach conclusions concerning the variables under study without being confounded by the test procedure itself. The guidelines also serve as a means to assist users of this type of test in obtaining good inter-laboratory agreement of results.
CURRENT
2016-04-05
Standard
J1563_201604
These guidelines are intended for those engineers and scientists who evaluate the corrosion performance of painted automotive parts in laboratory cyclic tests. The guidelines are intended to help ensure that the results of the tests can be used to reach conclusions concerning the variables under study without being confounded by the test procedure itself. The guidelines also serve as a means to assist users of this type of test in obtaining good inter-laboratory agreement of results.
HISTORICAL
1992-06-24
Standard
J1610_199206
This test method provides a standardized procedure for evaluating the sealing capability of a hose connection or any of the individual components of the connection with a pressure, vibration, and temperature (PVT) test facility. This test method consists of a test procedure which includes vibration and coolant flow and a similar test procedure specified without vibration or coolant flow. Any test parameters, other than those specified in this SAE Recommended Practice, are to be agreed to by the tester and the requestor.
HISTORICAL
2001-06-08
Standard
J1610_200106
This test method provides a standardized procedure for evaluating the sealing capability of a hose connection or any of the individual components of the connection with a pressure, vibration, and temperature (PVT) test facility. This test method consists of a test procedure which includes vibration and coolant flow (#1) and a similar test procedure specified without vibration or coolant flow (#2). Any test parameters, other than those specified in this SAE Recommended Practice, are to be agreed to by the tester and the requestor.
CURRENT
2012-10-24
Standard
J1610_201210
This test method provides a standardized procedure for evaluating the sealing capability of a hose connection or any of the individual components of the connection with a pressure, vibration, and temperature (PVT) test facility. This test method consists of a test procedure which includes vibration and coolant flow (#1 ) and a similar test procedure specified without vibration or coolant flow (#2). Any test parameters, other than those specified in this SAE Recommended Practice, are to be agreed to by the tester and the requestor.
CURRENT
2016-04-05
Standard
J1617_201604
The mechanism of automotive body corrosion is scientific, based on established laws of chemistry and physics. Yet there are many opinions related to the cause of body corrosion, not always based on scientific axioms. The purpose of this SAE Information Report is to present a basic understanding of the types of body corrosion, the factors that contribute to body corrosion, the testing procedures, evaluation of corrosion performance, and glossary of related terms.
Viewing 1 to 30 of 93