Refine Your Search

Topic

Author

Search Results

Standard

Procedure for the Continuous Sampling and Measurement of Non-Volatile Particle Emissions from Aircraft Turbine Engines

2013-11-18
HISTORICAL
AIR6241
This SAE Aerospace Information Report (AIR) describes procedures, required continuous sampling conditions, and instrumentation for the measurement of non-volatile particle number and mass concentrations from the exhaust of aircraft gas turbine engines. Procedures are included to calculate sampling loss performance. This AIR is not intended for in-flight testing, nor does it apply to engine operating in the afterburning mode.
Standard

Procedure for the Continuous Sampling and Measurement of Non-Volatile Particle Emissions from Aircraft Turbine Engines

2020-07-28
CURRENT
AIR6241A
This Aerospace Information Report (AIR) is a historical technical record describing procedures, required continuous sampling conditions, and instrumentation for the measurement of non-volatile particle number and mass concentrations from the exhaust of aircraft gas turbine engines. Procedures are included to calculate sampling loss performance. This AIR is not intended for in-flight testing, nor does it apply to engine operating in the afterburning mode. This Aerospace Information Report is a historical technical record of the initial document detailing the measurement of non-volatile particle emissions at the exit plane of aircraft gas turbine engines. This methodology was adopted by ICAO into Annex 16 Vol II and updated into Aerospace Recommended Practice ARP6320. Future updates of this document may include explanations of the reasoning and assumptions used to develop this measurement methodology.
Standard

Procedure for the Continuous Sampling and Measurement of Non-Volatile Particle Emissions from Aircraft Turbine Engines

2020-07-28
WIP
AIR6241B

This Aerospace Information Report (AIR) is a historical technical record describing procedures, required continuous sampling conditions, and instrumentation for the measurement of non-volatile particle number and mass concentrations from the exhaust of aircraft gas turbine engines. Procedures are included to calculate sampling loss performance. This AIR is not intended for in-flight testing, nor does it apply to engine operating in the afterburning mode.

This Aerospace Information Report is a historical technical record of the initial document detailing the measurement of non-volatile particle emissions at the exit plane of aircraft gas turbine engines. This methodology was adopted by ICAO into Annex 16 Vol II and updated into Aerospace Recommended Practice ARP6320.

Future updates of this document may include explanations of the reasoning and assumptions used to develop this measurement methodology.

Standard

Procedure for the Calculation of non-volatile Particulate Matter Sampling and Measurement System Penetration Functions and System Loss Correction Factors

2022-06-24
CURRENT
AIR6504
This SAE Aerospace Information Report (AIR) describes a method for assessing size dependent particle losses in a sampling and measurement system of specified geometry utilizing the non-volatile PM (nvPM) mass and number concentrations measured at the end of the sampling system.1 The penetration functions of the sampling and measurement system may be determined either by measurement or by analytic computational methods. Loss mechanisms including thermophoretic (which has a very weak size dependence) and size dependent losses are considered in this method2 along with the uncertainties due to both measurement error and the assumptions of the method. The results of this system loss assessment allow development of estimated correction factors for nvPM mass and number concentrations to account for the system losses facilitating estimation of the nvPM mass and number at the engine exhaust nozzle exit plane.
Standard

NADCAP Requirements for Nondestructive Testing Magnetic Particle Survey

2008-08-07
CURRENT
AS7114/2A
This document has been declared "CANCELLED" as of August 2008 and has been superseded by PRI AC7114/2. By this action, this document will remain listed in the Numerical Section of the Aerospace Standards Index noting that it is superseded by PRI AC7114/2. Cancelled specifications are available from SAE.
Standard

RECOMMENDED PRACTICE FOR MEASUREMENT OF STATIC MECHANICAL STIFFNESS PROPERTIES OF AIRCRAFT TIRES

1997-01-01
HISTORICAL
AIR1380A
The static mechanical stiffness properties of aircraft tires are fundamental to any computation of wheel and landing gear shimmy characteristics, and are important guides in anti-skid system and aircraft wheel design. While the mechanical stiffness properties of aircraft tires are frequency sensitive, the static or low frequency values are important because they are the ones most easily obtained by laboratory testing and are most commonly found in literature. The following recommended methods for measurement of such properties are believed to represent practices which will give reliable and repeatable measurements, either at one facility or among different facilities, using equipment which is commonly available in most tire testing installations.
Standard

AEROSPACE - HYDRAULIC SYSTEM FLUID CONTAMINATION - LOCATION OF SAMPLING POINTS

1989-10-01
HISTORICAL
ARP4268
The scope of this Aerospace Recommended Practice (ARP) covers where, when, and how often to sample hydraulic system fluid on aerospace vehicles for particulate contamination measurements. The measurement of hydraulic fluid particulate contamination is of concern to the aerospace community because of the critical importance of hydraulic equipment reliability. Contamination is always present in the system fluid, even in new unused fluid. Contamination must be below a level that will not adversely affect system operation. This ARP draws from aerospace industry experience and practice to establish criteria for fluid contamination sampling recommendations in aerospace vehicle hydraulic systems. Fluid samples can then be subjected to measurement of particulate contamination and of other harmful contaminants such as chlorinated solvents and water.
Standard

Cleaning Methods and Procedures for Breathing Oxygen Equipment

1999-05-01
HISTORICAL
AS13591
The purpose of this document is to provide minimum requirements for cleaning aircraft breathing oxygen systems and components, inspection methods and packaging after cleaning, and guidelines for oxygen equipment cleaning areas.
Standard

Bearings, Elastomeric General Specification for

2021-02-11
CURRENT
AS85598
This standard defines general requirements for spherical, radial-journal, conical, and thrust bearings which are of laminated elastomeric construction. These bearings are for use in an environment having a temperature spectrum of -65 to +160 °F while reacting steady state loads in addition to oscillating loads and motions. The operating temperature range of -65 to +160 °F reflects the current temperature range for existing parts, but allows for expansion in the future.
Standard

Transient Measurement Method Development for Aircraft Propulsion Engine and Auxiliary Power Unit Generated Contaminants in Bleed Air

2022-03-29
CURRENT
AIR6418
This SAE Aerospace Information Report (AIR) outlines transient measurement methods to determine engine-generated levels of relevant compressor bleed air contaminant marker compounds on a ground level test cell for aircraft propulsion engine or auxiliary power unit (APU) to be fitted on civil and military aircraft. This AIR focuses on lubrication oils that might enter the bleed air through leaking engine seals or other sources. Also considered are ingested engine combustion products, which must be differentiated from oil. The intent of this AIR is to identify key species that are markers typical of contaminants, not to characterize all possible contaminants. Real-time (transient) measurement methods to approximately quantify those markers are also discussed. Real-time methods developed for transient measurement could also be applied for real-time measurements in steady state operations in ground level test beds.
Standard

Oxygen Sensor Technologies

2020-12-18
CURRENT
AIR5933
AIR5933 provides an overview of contemporary technologies (i.e., sensors) that measure the proportion of oxygen in a gas. The use of these sensors in the aerospace environment, with its special constraints, is discussed and papers/reports with detailed information are summarized and referenced. The sensors are divided into expendable and non-expendable sensors. Expendable sensors are based on electrochemical properties, whereas non-expendable sensors rely on paramagnetic, photo-acoustic, electromagnetic, and laser spectroscopy properties.
Standard

Air Filter Element Test Method

2019-07-03
HISTORICAL
J1533_201907
This SAE test method establishes a uniform test procedure for determining the gravimetric (mass based) efficiency and pressure drop performance levels of operator enclosure panel type filters on off-road, self-propelled work machines used in earth moving, and forestry, as defined in SAE J1116 and for agricultural equipment as defined in ANSI/ASAE S390, and equipped with an operator enclosure with a powered fresh air system. ISO/TS 11155-1 may additionally be used, which describes the use of particle sizing devices to measure the fractional (particle size) efficiency of panel type filters for automotive cabin filter applications. Automotive cabin filters are similar to filters described in this procedure, and the ISO/TS 11155-1 test method is therefore directly applicable.
X