Criteria

Text:
Content:
Display:

Results

Viewing 1 to 30 of 1269
HISTORICAL
1994-01-01
Standard
AIR1168/14
A life support system (LSS) is usually defined as a system that provides elements necessary for maintaining human life and health in the state required for performing a prescribed mission. The LSS, depending upon specific design requirements, will provide pressure, temperature, and composition of local atmosphere, food, and water. It may or may not collect, dispose, or reprocess wastes such as carbon dioxide, water vapor, urine, and feces. It can be seen from the preceding definition that LSS requirements may differ widely, depending on the mission specified, such as operation in Earth orbit or lunar mission. In all cases the time of operation is an important design factor. An LSS is sometimes briefly defined as a system providing atmospheric control and water, waste, and thermal management. The major subsystems required to accomplish the general functions mentioned above are: Breathing and pressurization gas storage system. Temperature and humidity control system.
CURRENT
2012-10-15
Standard
AIR1168/14A
A life support system (LSS) is usually defined as a system that provides elements necessary for maintaining human life and health in the state required for performing a prescribed mission. The LSS, depending upon specific design requirements, will provide pressure, temperature, and composition of local atmosphere, food, and water. It may or may not collect, dispose, or reprocess wastes such as carbon dioxide, water vapor, urine, and feces. It can be seen from the preceding definition that LSS requirements may differ widely, depending on the mission specified, such as operation in Earth orbit or lunar mission. In all cases the time of operation is an important design factor. An LSS is sometimes briefly defined as a system providing atmospheric control and water, waste, and thermal management. The major subsystems required to accomplish the general functions mentioned above are: Breathing and pressurization gas storage system. Temperature and humidity control system.
HISTORICAL
2001-08-01
Standard
AIR1168/2
Heat transfer is the transport of thermal energy from one point to another. Heat is transferred only under the influence of a temperature gradient or temperature difference. The direction of heat transfer is always from the point at the higher temperature to the point at the lower temperature, in accordance with the second law of thermodynamics. The fundamental modes of heat transfer are conduction, convection, and radiation. Conduction is the net transfer of energy within a fluid or solid occurring by the collisions of molecules, atoms, or electrons. Convection is the transfer of energy resulting from fluid motion. Convection involves the processes of conduction, fluid motion, and mass transfer. Radiation is the transfer of energy from one point to another in the absence of a transporting medium. In practical applications several modes of heat transfer occur simultaneously.
CURRENT
2011-07-25
Standard
AIR1168/2A
Heat transfer is the transport of thermal energy from one point to another. Heat is transferred only under the influence of a temperature gradient or temperature difference. The direction of heat transfer is always from the point at the higher temperature to the point at the lower temperature, in accordance with the second law of thermodynamics. The fundamental modes of heat transfer are conduction, convection, and radiation. Conduction is the net transfer of energy within a fluid or solid occurring by the collisions of molecules, atoms, or electrons. Convection is the transfer of energy resulting from fluid motion. Convection involves the processes of conduction, fluid motion, and mass transfer. Radiation is the transfer of energy from one point to another in the absence of a transporting medium. In practical applications several modes of heat transfer occur simultaneously.
HISTORICAL
1989-07-01
Standard
AIR1168/4
This section presents the basic equations for computing ice protection requirements for nontransparent and transparent surfaces and for fog and frost protection of windshields. Simplified graphical presentations suitable for preliminary design, and a description of various types of ice, fog, frost, and rain protection systems are also presented.
HISTORICAL
2014-01-14
Standard
AIR1168/4A
This section presents the basic equations for computing ice protection requirements for nontransparent and transparent surfaces and for fog and frost protection of windshields. Simplified graphical presentations suitable for preliminary design and a description of various types of ice, fog, frost, and rain protection systems are also presented.
HISTORICAL
1993-04-01
Standard
AIR1168/6
This section relates the engineering fundamentals and thermophysical property material of the previous sections to the airborne equipment for which thermodynamic considerations apply. For each generic classification of equipment, information is presented for the types of equipment included in these categories, and the thermodynamic design considerations with respect to performance, sizing, and selection of this equipment.
CURRENT
2011-07-25
Standard
AIR1168/6A
This section relates the engineering fundamentals and thermophysical property material of the previous sections to the airborne equipment for which thermodynamic considerations apply. For each generic classification of equipment, information is presented for the types of equipment included in these categories, and the thermodynamic design considerations with respect to performance, sizing, and selection of this equipment.
CURRENT
2011-07-25
Standard
AIR1168/7A
The pressurization system design considerations presented in this AIR deal with human physiological requirements, characteristics of pressurization air sources, methods of controlling cabin pressure, cabin leakage control, leakage calculation methods, and methods of emergency cabin pressure release.
CURRENT
2012-10-03
Standard
AIR5666
This SAE Aerospace Information Report (AIR) presents and discusses the results of tests of three models in six icing wind tunnels in North America and Europe. This testing activity was initiated by the Facility Standardization Panel of the SAE AC-9C Aircraft Icing Technology Subcommittee. The objective of the testing activity was to establish a benchmark that compared ice shapes produced by icing wind tunnels available for use by the aviation industry and to use that benchmark as a basis for dialogue between facility owners to improve the state-of-the-art of icing wind tunnel technology.
HISTORICAL
2010-08-25
Standard
AIR5742
The scope of this document is related to the particular needs of oxygen equipment with regards to packaging and transportation. The document provides guidance for handling chemical, gaseous and liquid oxygen equipment. It summarizes national and international regulations to be taken into account for transportation on land, sea and air and provides information on classification of hazardous material. The aim of this document is to summarize information on packaging and transportation of oxygen equipment. Statements and references to regulations cited herein are for information only and should not be considered as interpretation of a law. Processes to maintain cleanliness of components and subassemblies during processing and assembly or storage of work-in-progress are outside the scope of this document.
CURRENT
2017-05-24
Standard
AIR5742A
The scope of this document is related to the particular needs of oxygen equipment with regards to packaging and transportation. The document provides guidance for handling chemical, gaseous and liquid oxygen equipment. It summarizes national and international regulations to be taken into account for transportation on land, sea and air and provides information on classification of hazardous material. The aim of this document is to summarize information on packaging and transportation of oxygen equipment. Statements and references to regulations cited herein are for information only and should not be considered as interpretation of a law. Processes to maintain cleanliness of components and subassemblies during processing and assembly or storage of work-in-progress are outside the scope of this document. Guidance on this can be obtained from ARP1176.
2014-10-23
WIP Standard
AIR5933
This AIR5933 gives an overview of contemporary technologies to determine the oxygen concentration respectively partial pressure in air. The aerospace application and its special constraints have been emphasized regarding weight, power supply, overall size, reliability and safety, cost and useful life.
HISTORICAL
2002-09-16
Standard
AIR1957
This document summarizes types of heat sinks and considerations in relation to the general requirements of aircraft heat sources, and it provides information to achieve efficient utilization and management of these heat sinks. In this document, a heat sink is defined as a body or substance used for removal of the heat generated by hydrodynamic or thermodynamic processes. This document provides general data about airborne heat sources, heat sinks, and modes of heat transfer. The document also discusses approaches to control the use of heat sinks and techniques for analysis and verification of heat sink management. The heat sinks are for aircraft operating at subsonic and supersonic speeds.
CURRENT
2013-03-15
Standard
AIR4015D
This Icing Technology Bibliography is a compendium of references from the open literature that were published prior to the original 1987 issuance of the AIR, including both national and foreign sources. Due to the generality of the subject, and the difficulty of fully investigating every available source, the Bibliography in this document is not intended to be complete.
2016-09-10
WIP Standard
AIR1811B
The purpose of this Aerospace Information Report (AIR) is to provide guidelines for the selection and design of airborne liquid cooling systems. This publication is applicable to liquid cooling systems of the closed loop type and the expendable coolant type in which the primary function is transporting of heat from its source to a heat sink. Most liquid cooling system applications are oriented toward the cooling of electronics. Liquid cooling techniques, heat sinks, design features, selection of coolants, corrosion control, and servicing requirements for these systems are presented. Information on vapor compression refrigeration systems, which are a type of cooling system, is found in Reference 1.
HISTORICAL
1985-09-01
Standard
AIR1811
This publication is applicable to liquid cooling systems of the closed loop type and the expendable coolant type in which the primary function is transporting of heat from its source to a heat sink. Most liquid cooling system applications are oriented toward the cooling of electronics. Liquid cooling techniques, heat sinks, design features, selection of coolants, corrosion control, and servicing requirements for these systems are presented. Information on vapor compression refrigeration systems, which are a type of cooling system, is found in Reference 1.
CURRENT
1997-10-01
Standard
AIR1811A
This publication is applicable to liquid cooling systems of the closed loop type and the expendable coolant type in which the primary function is transporting of heat from its source to a heat sink. Most liquid cooling system applications are oriented toward the cooling of electronics. Liquid cooling techniques, heat sinks, design features, selection of coolants, corrosion control, and servicing requirements for these systems are presented. Information on vapor compression refrigeration systems, which are a type of cooling system, is found in Reference 1.
CURRENT
2014-01-07
Standard
AIR171E
This document presents a glossary of many of the terms that can be found in literature covering issues related to aviation oxygen systems and associated topics. Such a listing can never be all inclusive but the majority of important terms are anticipated to be included for reference.
CURRENT
2013-05-20
Standard
AIR6036
Currently, existing civil aviation standards address the design and certification of oxygen dispensing devices that utilize oxygen sources supplying at least 99.5% oxygen. This Aerospace Information Report discusses issues relating to the use in the passenger cabin of oxygen enriched breathing gas mixtures having an oxygen content of less than 99.5% and describes one method of showing that passenger oxygen dispensing devices provide suitable hypoxia protection when used with such mixtures.
CURRENT
1996-12-01
Standard
AIR6
This publication formalizes the applicable design concepts considered acceptable for "draw-through" cooling of electronic (avionic) equipment installed in subsonic and supersonic commercial jet transports. Methods other than draw-through cooling are covered in AIR 728A for high Mach number aircraft.
CURRENT
2004-01-13
Standard
AIR5995
This report identifies the reasons for, and results associated with, the conduct of a flight simulation research project evaluating the effect of low powered laser beam illumination of pilot crewmembers operating in the navigable airspace. This evaluation was primarily concerned with the possible degradation of pilot performance when illuminated by a laser while operating in an airport terminal area where pilot workloads are normally at their maximum.
2017-01-18
WIP Standard
AIR6190A
This document provides information on provisions for passengers with disabilities on board commercial aircraft. In this context the term "provision of medical oxygen" shall be understood as application of oxygen on board an aircraft not linked to (post) decompression in the sense of Airworthiness Requirements FAR/CS 25 and Operational Regulations of FAR 121/135. Information about available equipment and physiological treatment in clinical practice will be provided in this document. It covers the use of oxygen concentrators according to guidance of FAR Advisory Circular AC120-95.
CURRENT
2012-06-06
Standard
AIR6190
This document provides information on provisions for passengers with disabilities on board commercial aircraft. In this context the term "provision of medical oxygen" shall be understood as application of oxygen on board an aircraft not linked to (post) decompression in the sense of Airworthiness Requirements FAR/CS 25 and Operational Regulations of FAR 121/135. Information about available equipment and physiological treatment in clinical practice will be provided in this document. It covers the use of oxygen concentrators according to guidance of FAR Advisory Circular AC120-95.
CURRENT
2012-07-19
Standard
AIR6155
The scope of this document is to provide a definition of “Multi-Crew Pilot License (MPL)” and its related training programs, and to provide a list of reference items for learning more details about MPL.
2016-06-27
WIP Standard
AIR6319
This document describes how the program achieves its objective: to educate and train currently qualified commercial pilots with multi-engine and instrument ratings for First Officer and eventually Captain positions with the regional and/or the major airlines. This document provides an overview of a selection process, an academic curriculum, and a flight training program which will develop industry-recognized competencies and instill the knowledge, skills and attitudes known as professional standards.
2013-11-26
WIP Standard
AIR6288
This document describes operational scenarios and examples of system operation based on the experience of different developers of airborne wake vortex safety systems. This information is intended to supplement the recommendations and guidance given in ARP 6267 “Airborne Wake Vortex Safety Systems” as well as facilitate the application of other wake vortex standards and guidance documents generated by SAE and RTCA.
2015-07-09
WIP Standard
AIR6341
The purpose of this AIR is to compile in one definitive source, commonly accepted calibration, acceptance criteria and procedures for simulation of Supercooled Large Droplet (SLD) conditions within icing wind tunnels. Facilities that meet the criteria for either some or all of the recognized conditions will have known SLD icing simulation capability.
CURRENT
2015-06-12
Standard
AIR6258
This document is intended to describe technologies available, application needs, and operational requirements relating to the use of fiber optic sensing systems on aerospace platforms: To define standard terminology used in describing fiber optic sensing systems and their performance. To identify current interfaces used for fiber optic sensing systems. To define environmental, reliability, and maintainability capabilities of fiber optic sensing system components. To describe the fiber optic sensor and instrumentation technologies that forms the current state of the art. To describe current and future unmet needs of the aerospace industry for measurements using fiber optic sensors.
Viewing 1 to 30 of 1269

Filter

  • Standard
    1269
  • Range:
    to:
  • Year: